• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinante de Matriz por Meio de Triangulação

Determinante de Matriz por Meio de Triangulação

Mensagempor elisafrombrazil » Dom Jan 29, 2017 20:59

Calcular o determinante da matrize A pelo método da triangulação.

Matriz A:
(1 2 3 4
2 0 0 5
6 0 3 0
1 0 0 -4)
elisafrombrazil
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Dez 31, 2016 10:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Determinante de Matriz por Meio de Triangulação

Mensagempor petras » Seg Jan 30, 2017 19:11

\begin{vmatrix} 1 &2 &3 &4 \\ 2& 0 &0 &5 \\ 6& 0 &3 &9 \\ 1& 0 &0 &-4 \end{vmatrix}\rightarrow L2 - 2 L1, L3 - 6L1 e L4 - L1

\begin{vmatrix} 1 &2 &3 &4 \\ 0& -4 &-6 &-3 \\ 0& -12 &-15 &-24 \\ 0& -2 &-3 &-8 \end{vmatrix}\rightarrow L3 - 3L2 e L4 - 1/2.L2

\begin{vmatrix} 1 &2 &3 &4 \\ 0& -4 &-6 &-3 \\ 0& 0&3 &-15 \\ 0& 0 &0 &-\frac{13}{2} \end{vmatrix}

D = 1 (-4)(3)(-13/2) = 78
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron