• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Base ortogonal

Base ortogonal

Mensagempor Danilo » Sáb Jun 11, 2016 22:57

Pessoal, estou em dúvida no seguinte exercício

Seja W o espaço ortogonal de {R}^{4} ortogonal a u1 = (1,1,2,2) e u2 = (0,1,2,-1). Encontre uma base ortogonal e uma base ortonormal de W. Sei que se eu encontrar uma base ortogonal para encontrar uma base ortonormal é só normalizar, certo?

Não sei como encontrar uma base ortogonal. Sei que para que dois vetores sejam ortogonais o produto interno entre eles deve ser zero. Mas não estou conseguindo usar essa informação para resolver o exercício. Grato quem puder ajudar.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Base ortogonal

Mensagempor DanielFerreira » Dom Jun 12, 2016 17:24

Danilo escreveu:Pessoal, estou em dúvida no seguinte exercício

Seja W o espaço ortogonal de {R}^{4} ortogonal a u1 = (1,1,2,2) e u2 = (0,1,2,-1). Encontre uma base ortogonal e uma base ortonormal de W. Sei que se eu encontrar uma base ortogonal para encontrar uma base ortonormal é só normalizar, certo?


Olá Danilo, boa tarde!

Pensei no seguinte: no \mathbb{R}^2, a base canônica é formada por (1, 0), (0, 1); No \mathbb{R}^3, a base canônica é formada por (1, 0, 0), (0, 1, 0), (0, 0, 1). Então no \mathbb{R}^4, a base deverá ser formada por u_1, u_2, u_3, u_4, desde que sejam L.I.

Encontremos u_3:

Seja u_3 = (a, b, c, d). Se a base é ortogonal, então u_3 \cdot u_2 = 0 e u_3 \cdot u_1 = 0. Desta condição chegamos em \begin{cases} a + b + 2c + 2d = 0 \\ b + 2c - d = 0 \end{cases}; como pode notar, trata-se de um sistema indeterminado (escolha uma solução).

Encontremos u_4:

Seja u_4 = (e, f, g, h). Se a base é ortogonal, então u_4 \cdot u_3 = 0, u_4 \cdot u_2 = 0 e u_4 \cdot u_1 = 0... (escolha uma solução).

Se u_1 e u_2 fossem ortogonais, teríamos concluído o exercício; mas não são, e, para torná-los ortogonais podemos aplicar o Processo de Gram-Schmidt.

Conhece esse Processo?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Base ortogonal

Mensagempor Danilo » Dom Jun 12, 2016 17:54

DanielFerreira escreveu:
Danilo escreveu:Pessoal, estou em dúvida no seguinte exercício

Encontremos u_3:


Se u_1 e u_2 fossem ortogonais, teríamos concluído o exercício; mas não são, e, para torná-los ortogonais podemos aplicar o Processo de Gram-Schmidt.

Conhece esse Processo?


Conheço! Mas não sei como aplicá-lo no exercício.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)