• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Base ortogonal

Base ortogonal

Mensagempor Danilo » Sáb Jun 11, 2016 22:57

Pessoal, estou em dúvida no seguinte exercício

Seja W o espaço ortogonal de {R}^{4} ortogonal a u1 = (1,1,2,2) e u2 = (0,1,2,-1). Encontre uma base ortogonal e uma base ortonormal de W. Sei que se eu encontrar uma base ortogonal para encontrar uma base ortonormal é só normalizar, certo?

Não sei como encontrar uma base ortogonal. Sei que para que dois vetores sejam ortogonais o produto interno entre eles deve ser zero. Mas não estou conseguindo usar essa informação para resolver o exercício. Grato quem puder ajudar.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Base ortogonal

Mensagempor DanielFerreira » Dom Jun 12, 2016 17:24

Danilo escreveu:Pessoal, estou em dúvida no seguinte exercício

Seja W o espaço ortogonal de {R}^{4} ortogonal a u1 = (1,1,2,2) e u2 = (0,1,2,-1). Encontre uma base ortogonal e uma base ortonormal de W. Sei que se eu encontrar uma base ortogonal para encontrar uma base ortonormal é só normalizar, certo?


Olá Danilo, boa tarde!

Pensei no seguinte: no \mathbb{R}^2, a base canônica é formada por (1, 0), (0, 1); No \mathbb{R}^3, a base canônica é formada por (1, 0, 0), (0, 1, 0), (0, 0, 1). Então no \mathbb{R}^4, a base deverá ser formada por u_1, u_2, u_3, u_4, desde que sejam L.I.

Encontremos u_3:

Seja u_3 = (a, b, c, d). Se a base é ortogonal, então u_3 \cdot u_2 = 0 e u_3 \cdot u_1 = 0. Desta condição chegamos em \begin{cases} a + b + 2c + 2d = 0 \\ b + 2c - d = 0 \end{cases}; como pode notar, trata-se de um sistema indeterminado (escolha uma solução).

Encontremos u_4:

Seja u_4 = (e, f, g, h). Se a base é ortogonal, então u_4 \cdot u_3 = 0, u_4 \cdot u_2 = 0 e u_4 \cdot u_1 = 0... (escolha uma solução).

Se u_1 e u_2 fossem ortogonais, teríamos concluído o exercício; mas não são, e, para torná-los ortogonais podemos aplicar o Processo de Gram-Schmidt.

Conhece esse Processo?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1664
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Base ortogonal

Mensagempor Danilo » Dom Jun 12, 2016 17:54

DanielFerreira escreveu:
Danilo escreveu:Pessoal, estou em dúvida no seguinte exercício

Encontremos u_3:


Se u_1 e u_2 fossem ortogonais, teríamos concluído o exercício; mas não são, e, para torná-los ortogonais podemos aplicar o Processo de Gram-Schmidt.

Conhece esse Processo?


Conheço! Mas não sei como aplicá-lo no exercício.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: