• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar se vetor pertence a subespaço

Determinar se vetor pertence a subespaço

Mensagempor Raffz » Seg Nov 24, 2014 02:23

Bom, sou novo aqui no fórum e já começo com uma dúvida, sinto por imcomodar-vos.
Pois bem:
A questão pede para eu dizer se o vetor abaixo pertence a W = [(2,1,0,3), (3,-1,5,2), (-1,0,2,1)]
O vetor é v = (2,3,-7,3)
Eu fiz a relaçao v = aW1+bW2+W3 (onde Wn são os vetores de W, enfim, fiz a relação de combinação linear)

Dai obtive a matriz ampliada que escalonei e me deu a seguinte situação:

1 0 0 -12/5
0 1 0 -1
0 0 1 -1
0 0 0 0

Ai entra a dúvida:
Substituindo o que encontrei em a,b e c não dá o vetor v! Mas como isso se isso foi exatamente o que a matriz me desvendou?

Ou eu fiz tudo errado... Ou eu fiz tudo errado rs
Então agradeceria muito quem me ajudasse nessa questão.

Ps: Estou usando o fórum no celular, por curiosidade, é possível usar o sistema Latex para colocar as fórmulas bonitinhas pelo celular? Ou só na versão desktop?

Abs.
Raffz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 24, 2014 02:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Determinar se vetor pertence a subespaço

Mensagempor adauto martins » Seg Nov 24, 2014 13:47

se v e vetor de W, entao existem a,b,c reais tal q.v=a{w}_{1}+b{w}_{2}+c{w3}_{}...(2,3,-7,3)=a(2,1,0,3)+b(3,-1,5,2)+c(-1,0,2,1)...[tex]\Rightarrow 2a+3b-c=2,a-b=3,5b+2c=-7,3a+2b+c=3... sao as equaçoes,colocando-as em uma matriz completa ...
A=\begin{pmatrix}
   2 & 3 & -1 &  2  \\ 
   1 & -1 & 0 & 3  \\
   0 & 5 & 2 & -7  \\ 
   3 & 2 & 1 & 3  \\
 


 

  \end{pmatrix},escalonandom,teremos
...\begin{pmatrix}
   1 & 3/2 & -1/2 &  1  \\ 
   0 & 1 & -1/5 & 4/5  \\
   0 & 0 & 1 & -1/5  \\ 
   0 & 0 & 0 & 9/10 \\
 


 

  \end{pmatrix}
[tex]\begin{pmatrix}

a ultima linha da matriz deveria ser toda nula,pois temos tres incgnitas(a,b,c),sistema e incompativel,nao tem soluçao...e como tem-se 0=9/10,caimos em uma incoerencia,uma contradiçao...logo o vetor v,nao pode ser tomado como uma combinaçao linear dos vetores deW=[....]...logo o vetor v,nao pertence ao subespaço gerado pela base W...
ps-costumo errar em contas,pisso e bom refaze-las...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Determinar se vetor pertence a subespaço

Mensagempor Raffz » Seg Nov 24, 2014 14:27

Agradeço pela ajuda. Agora compreendi o que aconteceu:
De início, permutei a L2 com a L1, isso é permitido porém é provável que isso tenh atrapalhado meus cálculos e errei em alguma besteira...

Fiz novamente o escalonamento, desta vez sem fazer essa permutação, e realmente, a última linha dá uma incoerência, o que mostra que o vetor não pertence a W.

Vlw!
Raffz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Nov 24, 2014 02:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)