• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dependência e independência linear

Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 11:38

Considere a equação x1\vec{a}+y1\vec{b}+z1\vec{c}=x2\vec{a}+y2\vec{b}+z2\vec{c}.
a)Mostre que se \vec{a}, \vec{b}, e \vec{c} são LI, então x1=x2,y1=y2 e z1=z2.
b) Mostre que se \vec{a},\vec{b} e \vec{c} são LD então não podemos concluir que x1=x2,y1=y2 e z1=z2.
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 13:05

Apresento uma ideia mais geral :

Seja E um espaço vetorial tal que \{v_1,v_2 , \hdots , v_m \} \subset E linearmente independente (L.I.) .

Seja v' \in E os vetores que são escritos como combinação linear de v_{i's} , isto é

v' =  \sum_{i=1}^m \alpha_i v_i  =   \alpha_1 v_1 +  \hdots  +  \alpha_m v_m  ;  \alpha_i \in \mathbb{R} .

Afirmamos que v' se exprimir de forma única como combinação linear dos v_{i's} , em outras palavras ,

Se v' =  \sum_{i=1}^m \alpha_i v_i  = \sum_{i=1}^m \beta_i v_i então \alpha_i = \beta_i  ,  i= 1 ,2,\hdots , m .

De fato ,

v' =  \sum_{i=1}^m \alpha_i v_i  =    \alpha_1 v_1 +  \hdots  +  \alpha_m v_m   = \sum_{i=1}^m \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m se e somente se (sse) \alpha_1 v_1 +  \hdots  +  \alpha_m v_m -( \beta_i v_i = \beta_1 v_1 +  \hdots  +  \beta_m v_m)   = O_E sse (\alpha_1 - \beta_1) v_1 + \hdots +  (\alpha_m - \beta_m) v_m   = O_E .Como \{v_1,v_2 , \hdots , v_m \} L.I ,segue-se por definição de independência linear que todos escalares \alpha_i - \beta_i são nulos e portanto \alpha_i = \beta_i , i = 1 ,2,3 , \hdots , m .

Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor MtHenrique » Dom Mai 04, 2014 18:03

Ajudou bem ;) , obrigado, mas você consegue resolver a letra b)?
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Dependência e independência linear

Mensagempor e8group » Dom Mai 04, 2014 22:43

Dica :

Se \{v_1, \hdots , v_m \} fosse L.D. ,alguns dos escalares \alpha_i  - \beta_i seria não nulo e com isso não podemos concluir a igualdade \alpha_i = \beta_i para todo i = 1 , ...,m .

Este raciocínio deve ser utilizado no item b.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}