• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Base] Encontrar uma base e a dimensão do subespaço

[Base] Encontrar uma base e a dimensão do subespaço

Mensagempor anderson_wallace » Sex Jan 10, 2014 00:48

Seja V={M}_{2,2}, e seja W o subespaço gerado por

\begin{pmatrix}
   1 & -5  \\ 
   -4 & 2 
\end{pmatrix}\ , \ \begin{pmatrix}
   1 & 1  \\ 
   -1 & 5 
\end{pmatrix}\ , \ 
\begin{pmatrix}
   2 & -4  \\ 
   -5 & 7 
\end{pmatrix} \ , \ 
\begin{pmatrix}
   1 & -7  \\ 
   -5 & 1 
\end{pmatrix}

Encontrar uma base e a dimensão de W.

Sempre que é dado um conjunto gerador e quero encontrar uma base de um subespaço de {R}^{n} uso um algoritmo dado no livro do seymour lipschutz, que consiste basicamente em escrever os vetores do conjunto gerador como colunas de uma matriz, escalona-la, e daí para cada coluna {C}_{k} da matriz escalonada que não tiver pivô (primeiro elemento não nulo de uma linha) retirar o vetor {u}_{k} do conjunto gerador. No fim, os vetores que restarem formam uma base do subespaço.

Mas nesse caso não estou trabalhando com n-uplas ordenadas, assim não tenho como escrever os elementos desse conjunto gerador como colunas de uma matriz. Como obter uma base para o conjunto em questão? Ou de modo mais geral, como proceder para encontrar uma base de um subespaço de matrizes de ordem n quando é dado um conjunto gerador?
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Base] Encontrar uma base e a dimensão do subespaço

Mensagempor e8group » Dom Jan 12, 2014 19:16

Tenho uma ideia . Considere A_1 , A_2 ,\hdots ,A_n matrizes p \times q linearmente independentes (L.I.) . Vamos designar o elemento da matriz A_k ,(k=1,\hdots,n) por [A_k]_{ij} (encontro da i-ésima linha com a j-ésima coluna da matriz A_k) com i=1,\hdots ,p e j=1, \hdots ,q . Tomemos a combinação linear nula

\sum_{k=1}^n \alpha_k A_k  = \alpha_1 A_1 + \hdots + \alpha_n A_n = O_{p\times q} = matriz nula de ordem p\times q .

Daí ,teremos o sistema de p\cdot q equações para n incógnitas .

\sum_{k=1}^n \alpha_k [A_k]_{ij} = 0 (i=1,...,p ; j=1,...,q)

ou na forma matricial

A \cdot  \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n  \end{pmatrix} =  \begin{pmatrix} 0 \\ 0\\ \vdots \\ 0 \end{pmatrix}_{n\times 1} em que

A é uma matriz (p\cdot q) \times  n ;e a cada m \in \{1,2,\hdots ,pq\} associamos um único vetor V_{ij} = ([A_1]_{ij},\hdots , [A_n]_{ij})  \in \mathbb{R}^n que representa sua m -ésima linha .

Podemos concluir que se as matrizes A_k são L.I., então a matriz acima A é invertível e portanto a , p=q e det(A) \neq 0 .

Em resumo ,dada as matrizes A_1 , A_2 ,\hdots ,A_n, para verificar que o conjunto constituído por elas é L.I. , façamos a verificação na seguinte ordem :

(i) Verificar se p=q
(ii) Caso o item (i) seja verdadeiro ,verifiquemos se det(A) \neq 0 .

Caso ambos itens acima são verdadeiros ,então o sistema acima só admite a solução trivial ,consequentemente \{A_1 , A_2 ,\hdots ,A_n\} L.I.


Exemplo .

Pelas 4 matrizes de ordem 2 \times 2 que você postou ,podemos formar por exemplo a seguinte matriz de ordem (2\cdot 2) \times 4 = 4 \times 4 (a primeira condição já é verdadeira )

\begin{pmatrix} 1 & 1 &2 & 1 \\  -5& 1 &-4 & -7 \\-4 & -1 & -5& -5 \\ 2&  5 &7 & 1 \end{pmatrix} .

Este é um exemplo (não o único) ,basta permutar as linhas da matriz acima que obterá outras possibilidades .

Vamos verificar o item (ii) , usando o wolfram alpha

http://www.wolframalpha.com/input/?i=de ... 2C+1%7D%7D

podemos ver que o determinante da matriz é nulo ; logo ela não é invertível ,logo o conjunto constituído pelas matrizes dadas não é uma base do espaço vetorial dado .

Espero que ajude .Se notar algo errado por favor post .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Base] Encontrar uma base e a dimensão do subespaço

Mensagempor anderson_wallace » Seg Jan 13, 2014 23:24

Não conhecia essa propriedade que envolve do determinante da matriz. É um método bem prático para determinar se as matrizes são L.I. ou L.D..
Havia tentado encontrar o subespaço gerado, isto é, encontrar uma notação geral para todas as matrizes que podem ser escritas como combinação linear dessas e daí encontrar uma base, mas não deu certo (o escalar que multiplicava a última matriz não tinha como ser 'eliminado').
Estive estudando melhor esse exercício e acho que a única forma de encontrar uma base desse subespaço a partir desse conjunto gerador é testando para verificar qual matriz é combinação linear da demais, e assim remover do conjunto.

Obrigado pela ajuda!
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Base] Encontrar uma base e a dimensão do subespaço

Mensagempor Guilherme Pimentel » Qua Jan 15, 2014 05:23

Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.


cron