por lucasdemirand » Dom Set 01, 2013 00:08
ola amigos, estou com uma duvida para a resolução do seguinte exercício, quem puder me dar uma ajuda, agradeço desde já
Mostrar que a reta (s) y=2x-5 z=3x +4 pertence ao plano que passa pelo ponto B(0,07) e tem um vetor normal n=(9,3,-5)
-
lucasdemirand
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Sáb Jul 06, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por e8group » Dom Set 01, 2013 01:31
Boa noite . Conseguiu determinar a equação do plano ? Uma reta estará contida no plano quando todos seus pontos pertencem ao plano .Tome um ponto genérico desta reta como P=(x,2x,3x+4) [x em R] e mostre que as coordenadas deste ponto satisfaz a equação do plano,uma vez mostrado isto ,significa que P pertence ao plano (enunciado) .
Vejamos um exemplo :
Considere o plano que passa pela origem de equação 2x+3y+5z = 0 (*) e reta que passa pela origem de equação parametrizada x=-2t ; y=-3t; z=t (t em R) . Um ponto genérico desta reta é P =(-2t,-3t,5t ) já do plano é X=(a,b,c) tal que 2a+3b+5c = 0 . Assim Sendo -2t -3t + 5t = 0 obtemos que P pertence ao plano de eq . (*) , como P é arbitrário ,logo todo ponto que pertence a reta acima também pertence ao plano ,isto é , a reta acima está contida no plano . Espero que ajude este exemplo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por lucasdemirand » Dom Set 01, 2013 12:41
olá santiado, mas tarde da noite ontem eu consegui resolver o problema de outro modo. Mas obrigado pela ajuda, é sempre importante saber dois modos de realizar o calculo de um exercício, ainda mais sendo a minha cadeira de alga, que a minha professora costuma se puxar nas provas
-
lucasdemirand
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Sáb Jul 06, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- G.A. Retas e o Plano
por Diego Silva » Ter Jun 11, 2013 18:47
- 0 Respostas
- 1417 Exibições
- Última mensagem por Diego Silva

Ter Jun 11, 2013 18:47
Geometria Analítica
-
- retas paralelas e ortogonais ao plano
por ricardosanto » Sáb Dez 15, 2012 11:44
- 1 Respostas
- 1516 Exibições
- Última mensagem por young_jedi

Sáb Dez 15, 2012 20:26
Álgebra Linear
-
- Retas paralelas a um mesmo plano
por ViniciusAlmeida » Qui Ago 27, 2015 19:52
- 0 Respostas
- 1253 Exibições
- Última mensagem por ViniciusAlmeida

Qui Ago 27, 2015 19:52
Geometria Analítica
-
- Equação geral do plano usando duas retas
por iarapassos » Sáb Set 01, 2012 19:12
- 2 Respostas
- 8779 Exibições
- Última mensagem por iarapassos

Dom Set 02, 2012 22:15
Geometria Analítica
-
- Que assunto pertence essa questão?
por gilson » Qua Mai 15, 2013 21:05
- 2 Respostas
- 2471 Exibições
- Última mensagem por gilson

Qui Mai 16, 2013 00:02
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.