• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaços vetoriais

Espaços vetoriais

Mensagempor crsjcarlos » Seg Jun 10, 2013 19:14

Tenho um subespaço de R^4, gerado por 4 vetores S = {(1,2,-1,3) , (3,0,1,-2) , (1,-4,3,-8) , (5,-8,7,-18)}. Esse espaço tem dimensão igual a 2. Faço a matriz A (4x4), cujas colunas são os 4 vetores.
Tomamos o sistema A.X = 0, e obtemos como solução geral, X = [(4a + 2b , -3a - b , b , a)].
Escrevo X como o subespaço {(4,-3,0,1) , (2,-1,1,0)], logo, esses dois vetores de X geram o subespaço X, e portanto formam uma base de X.

A minha dúvida é a seguinte: Quero saber se os dois vetores de X podem ser uma base para S.
crsjcarlos
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 05, 2012 17:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.