por will140592 » Dom Mar 03, 2013 11:40
dada a equaçao x+6=x²,uma equaçao equivalente a mesma é:
resposta que eu achei que poderia ser: c) x+6+[(1)/(x-3)]=x²+[(1)/(x-3)]
resposta certa de acordo com o livro: d) 3(x+6)=3x²
duvida: na resposta c exite uma fraçao igual nos dois lado da equaçao, por que eu nao poderia cancelar, assim a equaçao ficaria igual.
-
will140592
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Mar 03, 2013 11:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Dom Mar 03, 2013 19:45
Note que

é raíz da equação. Assim, a fração

iria gerar

descartando essa solução. Por isso que a forma proposta para a equação não é bem vista mesmo que, sim, você pudesse cancelar as frações em ambos membros da equação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do segundo grau
por VtinxD » Qui Jan 27, 2011 23:03
- 1 Respostas
- 3509 Exibições
- Última mensagem por douglaspezzin

Dom Jun 19, 2011 09:55
Desafios Médios
-
- Equação de segundo grau
por maria cleide » Seg Mai 09, 2011 23:46
- 3 Respostas
- 2293 Exibições
- Última mensagem por FilipeCaceres

Ter Mai 10, 2011 00:43
Sistemas de Equações
-
- Equação do segundo grau
por LuizCarlos » Qui Mai 10, 2012 13:01
- 3 Respostas
- 2327 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 12, 2012 20:41
Álgebra Elementar
-
- Equação do segundo grau
por LuizCarlos » Sex Jun 15, 2012 16:14
- 5 Respostas
- 3202 Exibições
- Última mensagem por LuizCarlos

Sáb Jun 16, 2012 13:31
Álgebra Elementar
-
- equaçao de segundo grau
por will140592 » Dom Mar 03, 2013 20:21
- 1 Respostas
- 1475 Exibições
- Última mensagem por Russman

Dom Mar 03, 2013 20:43
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.