• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra linear

Algebra linear

Mensagempor Well » Sáb Mar 02, 2013 21:26

Calcule o único valor de a que faz com que S = {(1, 1, 1) , (1, 0, 1) , (0, 2, 0) , (3, 2, a)} não seja um conjunto gerador de R3.

Eu resolvi e encontrei a=3 , que é a resposta correta. Mas gostaria de ver outra resolução e comparar com a minha.
Agradeço.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Algebra linear

Mensagempor young_jedi » Dom Mar 03, 2013 00:18

temos que os quatro elementos tem que ser linearmente independentes, para que possam gerar R3
no entanto do terceiro elemento é uma combinação dos dois primeiros

2(1,1,1)-2(1,0,1)=(0,2,0)

portanto se o terceiro for uma combinação linear dos outros dois então, eles não são capazes de gerar R3

portanto se a=3

2(1,1,1)+(1,0,1)=(3,2,3)

então o conjunto não é capaz de gerar R3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59