• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Gram Schimdt] achar base ortonormal

[Gram Schimdt] achar base ortonormal

Mensagempor Ge_dutra » Qua Jan 30, 2013 11:25

Bom dia,

Estou tentando resolver um exercicio e a resposta não bate com o gabarito do livro.

O exercício é:

Ortonormalizar a base B = {(1,0,0),(0,1,1),(0,1,2)} pelo processo de Gram-Schimdt

Os dois primeiros vetores bateram com o livro, mas o terceiro não. O gabarito é {(1,0,0),(0,\frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{2}}),(0,-\frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{2}})}

O meu terceiro vetor deu (0,\frac{1}{2},1) que normalizado não deu (0,-\frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{2}})

Poderiam me ajudar?

Desde já, agradeço.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Gram Schimdt] achar base ortonormal

Mensagempor young_jedi » Qui Jan 31, 2013 15:18

para achar o terceiro vetor

v_3=u_3-\frac{<u_3,u_1>}{<u_1,u_1>}.u_1-\frac{<u_3,u_2>}{<u_2,u_2>}.u_2

v_3=(0,1,2)-\frac{0}{5}.(1,0,0)-\frac{3}{2}.(0,1,1)

v_3=\left(0,-\frac{1}{2},\frac{1}{2}\right)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.