• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Transform. linear] A imagem de T(x,y,z)=(x,y,z)x(1,1,1) é?

[Transform. linear] A imagem de T(x,y,z)=(x,y,z)x(1,1,1) é?

Mensagempor robmenas » Seg Abr 01, 2019 13:25

A imagem da transformação linear T(x,y,z)=(x,y,z)\times(1,1,1), em que \times indica o produto vetorial em \mathbb{R}^3, é:

    (A) \mathbb{R}^3
    (B) A reta de equação t(1,1,1), t \in \mathbb{R}
    (C) A reta de equação t(1,0,-1), t \in \mathbb{R}
    (D) O plano de equação x+y+z=0
    (E) O plano de equação x-z=0
robmenas
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 30, 2019 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: formado

Re: [Transform. linear] A imagem de T(x,y,z)=(x,y,z)x(1,1,1)

Mensagempor robmenas » Sáb Abr 06, 2019 15:07

T(x,y,z) = (x,y,z)\times(1,1,1)
T(x,y,z) = (y-z , z-x , x-y)
T(x,y,z) = (0, -x, x) + (y, 0, -y) + (-z, z, 0)
T(x,y,z) = x(0, -1, 1) + y(1, 0, -1) + z(-1, 1, 0)

Ou seja, Im(T) é o conjunto gerado pelos vetores (0, -1, 1), (1, 0, -1) e (-1, 1, 0).
Opções:
(1) se os vetores são L.I., então Im(T) = \mathbb{R}^3;
(2) se os vetores são L.D., então Im(T) forma algum plano ou alguma reta;

x(0, -1, 1) + y(1, 0, -1) + z(-1, 1, 0) = (0, 0, 0)
\left\{
\begin{array}{ll}y-z=0
\\
z-x=0 \\
x-y=0
\end{array}

x = z = y que é diferente da solução trivial, então os vetores são linearmente dependentes. Descartando um deles, podemos dizer que
Im(T) é o conjunto gerado pelos vetores (0, -1, 1) e (1, 0, -1).

Opções:
(1) se os vetores são L.I., então Im(T) forma um plano;
(2) se os vetores são L.D., então Im(T) forma uma reta;

x(0, -1, 1) + y(1, 0, -1) = (0, 0, 0)
\left\{
\begin{array}{ll}y=0
\\
x=0 
\end{array}
Que é a solução trivial. Logo os vetores são Linearmente independentes e Im(T) forma um plano.

Comparando aos planos dados nas alternativas, o único que se ajusta aos vetores (0, -1, 1) e (1, 0, -1), que são bases da Im(T), é x+y+z=0.

Logo, a resposta é a alternativa D.
robmenas
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 30, 2019 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59