• Anúncio Global
    Respostas
    Exibições
    Última mensagem

transformações lineares

transformações lineares

Mensagempor bebelo32 » Sáb Dez 06, 2014 14:50

1) seja V = o espaço vetorial de todas as funções reais e h \in R .Mostre que cada uma das funções T : V\rightarrow V abaixo é uma transformação linear

a) (Tf)(x) = f (x) - f(x-h)

R:1) T(f-g)(x) = (f-g)(x-h)-(f-g)(x) = f(x-h) - g(x-h) - f(x) - g(x) = f(x-h) - f(x) - g(x-h)-g(x) = f (f(x)) - f(g(x-h)

2) T(af(x) = af (x-h)(x) = af(x-h) - f(x)) = af (f(x))

essa questao esta certa ou errada

tentei fazer e conseguir
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: transformações lineares

Mensagempor adauto martins » Sáb Dez 06, 2014 15:57

1)Tf(x)=f(x)-f(x+h)...
T(f+g)(x)=f+g(x)-(f+g)(x+h)=f(x)+g(x)-f(x+h)-g(x+h)=f(x)-f(x+h)+g(x)-g(x+h)=Tf(x)+Tg(x)
1)T(af)(x)=af(x)-af(x+h))=a(f(x)-f(x+h))=aTf(x)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59