• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Linear][Dúvida][Provar subespaço]

[Álgebra Linear][Dúvida][Provar subespaço]

Mensagempor Nicolas1Lane » Sex Set 12, 2014 16:45

A questão que estou a fazer me pede para verificar se W é subspaço de M(2,2) sendo W \in M(2,2)/ b = a d = -a

Então pensei; fácil, basta provar que as propriedades de soma de 2 matrizes estão contidas no subespaço assim como o produto de 2 matrizes igual ao produto do mesmo quando sua ordem for trocada...
-Para a soma, Ok.
-Mas para o produto, nem
Queria ajuda de vocês para ver se estou certo nisto ou o gabarito está correto. Ele afirma ser verdade que W é subspaço de M.
Mas olhem comigo isto:
Se Wo = \begin{pmatrix}
ao & ao \\
co & -ao\\
\end{pmatrix} e Wi = \begin{pmatrix}
ai & ai \\
ci & -ai\\
\end{pmatrix}
Então WoWi=WiWo\rightarrow \begin{pmatrix}
aoai+aoci & aoai-aoai\\
coai-aoci & coai+aoai\\
\end{pmatrix} = \begin{pmatrix}
aoai+aico & aiao-aiao\\
ciao-aico & ciao+aiao\\
\end{pmatrix}\rightarrow \begin{pmatrix}
ao(ai+ci) &       0      \\
coai-aoci & ai(co+ao)\\
\end{pmatrix}  \neq \begin{pmatrix}
ai(ao+co) &     0       \\
ciao-aico & ao(ci+ai)\\
\end{pmatrix}

Poderiam me dar uma luz, galera?
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Álgebra Linear][Dúvida][Provar subespaço]

Mensagempor adauto martins » Qui Out 23, 2014 15:11

para provar se W e um subespaço,deve-se provar q.:
1)0\in M(2,2):
afirmativo,pois 0=0.0=-0,logo0\in M(2,2)
2)dados {W}_{1},{W}_{2}\in M(2,2)e a,b \in\Re(corpo),entao a.{W}_{1}+b{W}_{2}\in M(2,2),aqui multiplicaçao por escalar e nao multiplicaçao de matruizes,como vc fez,entao:
sejam... {w}_{1}\in M(2,2)\Rightarrow a.w2=a(w1.w2)=-a.w1,
{w}_{2}\in M(2,2)\Rightarrow b.w2=b.(w1.w2)=-b.w1,,LOGO:
a.a.{W}_{1}+b{W}_{2}=a.w1+bw2=a.(w1.w2)+b.(w1.w2)=a.(-w1) +b.(-w2)=-(aw1+bw2),o qual satisfaz a propriedade de multiplicaçao por escalar logo W\in M(2,2)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?