• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Base

Base

Mensagempor Priscilla Correa » Seg Set 30, 2013 20:42

Olá, gostaria de ajuda nesse exercício:
Verifique se o subconjunto B do espaço vetorial V é uma base de V.
B = {1, 1+t, 1-t², 1-t-t²-t³}, V= P3(R).

Obrigada
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Base

Mensagempor Russman » Seg Set 30, 2013 20:56

Para o subconjunto ser base é necessário q o mesmo seja LI. Verifique este fato.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Base

Mensagempor Priscilla Correa » Seg Set 30, 2013 21:04

Eu sei que ele tem que ser LI, mas para mostrar isso eu multiplico eles por alfa, beta, gama e delta e igualo a "0"??

Obrigada
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Base

Mensagempor Russman » Seg Set 30, 2013 21:23

Não necessariamente. Para B não ser LI basta que um dos vetores seja combinação linear dos demais( ou até mesmo só de um).

Exemplo:

O conjunto B={v_1,v_2}={x,2x} não é LI, pois 2.v_1=v_2. Isto é, v_2 é escrito como combinação linear dos demais vetores do subconjunto.

No seu exemplo veja claramente que não existem coeficientes que multiplicados aos vetores resultam em um que esteja no conjunto. Assim, ele é LI e pode ser base do P_3(\mathbbm{R}) pois existem {a_0,a_1,a_2,a_3} Reais tais que

a_0 + a_1(1+t) + a_2(1-t^2) + a_3(1-t-t^2-t^3) = \alpha_0  + \alpha_1 t +  \alpha_2 t^2 + \alpha_3 t^3

onde \alpha_i é Real.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Base

Mensagempor Priscilla Correa » Ter Out 01, 2013 00:28

Entendi, estou tento um pouco de dificuldade de entender algebra linear, poderia me dar umas dicas de como estudar??

Obrigada
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Base

Mensagempor Russman » Qua Out 02, 2013 00:15

Faça exercícios. Faça montes deles até parecerem muito fáceis de resolver.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Base

Mensagempor Priscilla Correa » Qua Out 02, 2013 05:04

Obrigada
:D
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Base

Mensagempor Cleyson007 » Qua Out 02, 2013 10:28

Bom dia Priscilla!

Te enviei uma mensagem privada, espero que lhe ajude. Confere lá :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?