por manoelcarlos » Seg Set 30, 2013 23:51
Pessoal, estou com um problemão. Tenho uma lista de exercícios pra responder com base em pesquisas na internet. Depois de dar uma googlada, JURO, só consegui encontrar uma das afirmações e mesmo assim não tenho certeza de está correta. Alguém pode me ajudar com isso?
Marque as alternativas cuja afirmação é verdadeira:
Os vetores (1,0) e (0,1) formam uma base ortonormal
Dois vetores coplanares são linearmente independentes (F)
A soma de dois vetores opostos de mesma direção e mesmo módulo é o vetor nulo
Dois vetores linearmente independentes de módulos iguais a 1 formam uma base ortonormal
A soma de quatro vetores do espaço pode ser igual a um dos vetores envolvidos no cálculo
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Qua Out 02, 2013 00:24
manoelcarlos escreveu:Os vetores (1,0) e (0,1) formam uma base ortonormal
Verdadeira, pois o conjunto é LI, ortogonal e de módulo 1.
manoelcarlos escreveu:Dois vetores coplanares são linearmente independentes (F)
Depende. Os veotres (1,0) e (0,1) são coplanares e LI. Já (1,2) e (2,4) também são coplanares porém LD.
manoelcarlos escreveu:A soma de dois vetores opostos de mesma direção e mesmo módulo é o vetor nulo
Verdadeiro. O vetor v é oposto em sentido, igual em direção e módulo ao vetor -v e v+(-v) = 0 [vetor nulo] .
manoelcarlos escreveu:Dois vetores linearmente independentes de módulos iguais a 1 formam uma base ortonormal
Verdadeiro. Para o conjunto ser base os vetores devem ser LI entre si. Sendo ortogonais são também LI. Se forem de módulo 1 então são ortonormais também.
manoelcarlos escreveu:A soma de quatro vetores do espaço pode ser igual a um dos vetores envolvidos no cálculo
Não entendi a afirmação. Que espaço? Que cálculo?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Propriedades de Limite. Provar afirmações
por Blame » Qua Abr 24, 2013 19:52
- 1 Respostas
- 1493 Exibições
- Última mensagem por e8group

Sex Abr 26, 2013 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Quais os subconjuntos de A={a,{b,c},D}?
por vitor lima » Seg Mar 15, 2010 21:49
- 5 Respostas
- 3092 Exibições
- Última mensagem por Molina

Ter Mar 16, 2010 22:04
Conjuntos
-
- quais sao os valores de k...
por weverton » Dom Out 24, 2010 02:54
- 3 Respostas
- 4608 Exibições
- Última mensagem por Elcioschin

Sex Dez 24, 2010 18:16
Geometria Analítica
-
- Quais os números que são as raízes do seguinte polinômio
por andersontricordiano » Sáb Fev 25, 2012 01:22
- 1 Respostas
- 1504 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 25, 2012 01:51
Polinômios
-
- Quais as diferenças destes termos - algebra
por Soprano » Seg Fev 15, 2016 14:11
- 0 Respostas
- 1965 Exibições
- Última mensagem por Soprano

Seg Fev 15, 2016 14:11
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.