• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Duvida

[Matrizes] Duvida

Mensagempor Knoner » Dom Set 29, 2013 19:49

Olá, estou em duvida na seguinte questão:

Sejam A, B, e Mn (R) e a £ R, mostre que:

a)(A^t)^t = A
b)(\alphaA)^t = \alphaA^t, onde \alpha ? K
c)Se n=m, (A.B)^t = B^T . A^T
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: [Matrizes] Duvida

Mensagempor e8group » Seg Set 30, 2013 21:52

Item a ) Utilizando a notação [A]_{ij} = a_{ij} para designar o termo geral da matriz e lembrando da definição de transposição de matrizes : [A^t]_{ij} = [A]_{ji} = a_{ji} (**) , temos que
[(A^t)^t]_{ij} =  [A^t]_{ji} = [A]_{ij} = a_{ij} para todo i = 1 , \hdots , m ,  j = 1 , \hdots , n o que mostra A =(A^t)^t . No item b , utilize a definição (**) + propriedades dos números reais ,se não conseguir post . No item c , basta intercambiar a definição (**) juntamente com a definição produto de matrizes . Veja minha sugestão ,

[(AB)^t]_{ij} = [AB]_{ji} = \sum_{k=1}^n a_{jk} \cdot  b_{ki} . Sendo o produto a_{jk} \cdot  b_{ki} comutativo (pois ,a_{jk} ,  b_{ki}são números reais) e utilizando resultado do item (a) , a_{jk} = [A^t]_{kj} , b_{kj} = [B^t]_{jk} . Seguindo estas dicas conseguirá concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.