por Knoner » Dom Set 29, 2013 19:49
Olá, estou em duvida na seguinte questão:
Sejam A, B, e Mn (R) e a £ R, mostre que:
a)(A^t)^t = A
b)(

A)^t =

A^t, onde

? K
c)Se n=m, (A.B)^t = B^T . A^T
-
Knoner
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Set 26, 2013 20:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Fisica
- Andamento: cursando
por e8group » Seg Set 30, 2013 21:52
Item a ) Utilizando a notação
![[A]_{ij} = a_{ij} [A]_{ij} = a_{ij}](/latexrender/pictures/696f564a2df9d77962db1d56d1f617c8.png)
para designar o termo geral da matriz e lembrando da definição de transposição de matrizes :
![[A^t]_{ij} = [A]_{ji} = a_{ji} [A^t]_{ij} = [A]_{ji} = a_{ji}](/latexrender/pictures/bb4429fd8d2c473fce86883ea5eeeef3.png)
(**) , temos que
![[(A^t)^t]_{ij} = [A^t]_{ji} = [A]_{ij} = a_{ij} [(A^t)^t]_{ij} = [A^t]_{ji} = [A]_{ij} = a_{ij}](/latexrender/pictures/a968c7178a1e4963ea162d4561724979.png)
para todo

o que mostra

. No item b , utilize a definição (**) + propriedades dos números reais ,se não conseguir post . No item c , basta intercambiar a definição (**) juntamente com a definição produto de matrizes . Veja minha sugestão ,
![[(AB)^t]_{ij} = [AB]_{ji} = \sum_{k=1}^n a_{jk} \cdot b_{ki} [(AB)^t]_{ij} = [AB]_{ji} = \sum_{k=1}^n a_{jk} \cdot b_{ki}](/latexrender/pictures/164a9a91760a9c2213b4421a97d2384f.png)
. Sendo o produto

comutativo (pois ,

são números reais) e utilizando resultado do item (a) ,
![a_{jk} = [A^t]_{kj} , b_{kj} = [B^t]_{jk} a_{jk} = [A^t]_{kj} , b_{kj} = [B^t]_{jk}](/latexrender/pictures/bcc05bba66e675b80521c5cf67d26370.png)
. Seguindo estas dicas conseguirá concluir o exercício .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes] Dúvida .
por e8group » Ter Out 16, 2012 22:12
- 2 Respostas
- 2698 Exibições
- Última mensagem por e8group

Qui Out 18, 2012 11:11
Matrizes e Determinantes
-
- [Matrizes] Dúvida .
por e8group » Seg Out 22, 2012 23:06
- 2 Respostas
- 1385 Exibições
- Última mensagem por e8group

Ter Out 23, 2012 09:08
Matrizes e Determinantes
-
- duvida 3 questoes de matrizes
por naopercebo » Seg Out 24, 2011 22:03
- 1 Respostas
- 1034 Exibições
- Última mensagem por LuizAquino

Ter Out 25, 2011 10:29
Matrizes e Determinantes
-
- [Matrizes] Dúvida conceitual
por souzalucasr » Qua Ago 22, 2012 14:26
- 4 Respostas
- 4604 Exibições
- Última mensagem por souzalucasr

Qua Ago 29, 2012 12:34
Matrizes e Determinantes
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 4920 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.