• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Coordenadas de um ponto simetrico]

[Coordenadas de um ponto simetrico]

Mensagempor lucasdemirand » Dom Set 01, 2013 11:40

Determinar as coordenadas do ponto Q, simétrico do ponto P(2,1,3) em relação ao plano 4x-3y+z+18=0
tenho em meu gabarito a resposta (-6,7,1) no entanto não consigo chegar a esse valor, como devo proceder para a execução do exercício ?
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Coordenadas de um ponto simetrico]

Mensagempor e8group » Ter Set 03, 2013 12:12

Obs.: Cada código entre [; ;] recomendo que copie e cole neste site http://www.codecogs.com/latex/eqneditor.php?lang=pt-br para visualizar .

Antes de começar este exercício ,vamos ver um exemplo simples em [; \mathbb{R}^1 = \mathbb{R}; ] (Reta). Os números [; 2 , - 2 ;] são simétricos em relação a origem ,e temos a seguinte propriedade :

(i) A distância entre os números 2 e -2 é equivalente ao dobro da distância entre os números 0 e 2 assim como 0 e - 2 ,isto é ,
[; d(-2,2) = 2 d(-2,0) = 2d(0,2) ;] onde denotamos [; d(a,b) = |b-a| = max\{b-a,a-b\} ;] para [;a,b; \in \mathbb{R} ] .

Em [; \mathbb{R}^2 ; ] (plano), ..., [; \mathbb{R}^n = \mathbb{R} \times \hdots \times \mathbb{R} (n-\text{vezes}) ;] (espaço euclidiano n-dimensional) é análogo .Considere [;P,Q,M ;] em [; \mathbb{R}^n ; ] e suponha P simétrico de Q em relação à M . Temos a seguinte propriedade :

(i) A distância entre os pontos P e Q é equivalente ao dobro da distância entre os pontos M e P assim como Q e M ,isto é ,
[; d(P,Q) = 2 d(Q,M) = 2d(M,P) ;] onde denotamos [; d(A,B) = ||B-A|| = \sqrt{(x_1 - y_1)^2 + \hdots + x_n - y_n)^2} ;] para [;A=(y_1,\hdots ,y_n) ,B=(x_1,\hdots ,x_n) \in \mathbb{R}^n ;]

(ii) Além do item (i). Por álgebra vetorial [; \overrightarrow{QP} = 2 \overrightarrow{MP} ;] .Mas ,

[; \overrightarrow{QP} = \overrightarrow{OP} - \overrightarrow{OQ} ;] e portanto [; \overrightarrow{OP} - 2 \overrightarrow{MP} = \overrightarrow{OQ} ;] em que [; O = (0, \hdots ,0 ) \in \mathbb{R}^n ;] . Assim concluímos que a i-ésima coordenada do ponto Q corresponde a i-ésima componente do vetor [; \overrightarrow{OP} - 2 \overrightarrow{MP} ;] para i =1,...,n .

Quanto ao exercício estamos no caso em n = 3 . Considere então [;Q,M \in \mathbb{R}^3 ;] tal que M pertença ao plano dado (chamamos de \pi ) e Q seja simétrico de P(dado) em relação ao ponto M . Observe que este ponto M é tal que a distância de P à \pi (equivalentemente Q à \pi ) seja menor possível e isto ocorre somente quando os vetores normal ao plano e [;\overrightarrow{MP} ;] sejam paralelos ,então obtemos que existe um escalar a em R tal que [;\overrightarrow{MP} = a(4,-3,1) ;] .Por outro lado ,[; M = (x,y, -18-4x+3y) ;] (x e y a ser determinados ) [Pois M pertence à \pi ] e
[; \overrightarrow{MP} = (2-x,1-y,21+4x-3y) ;] e portanto [;(2-x,1-y,21+4x-3y) =a(4,-3,1) = (4a,-3a,a) ;] que se resume a um sistema linear de três equações para três incógnitas , a saber ,

[; (2-x,1-y,21+4x-3y) =a(4,-3,1) = (4a,-3a,a) = \begin{cases}2-x = 4a \\ 1-y = -3a \\ 21+4x-3y = a\end{cases} ;] que nos fornece como solução [; a= 1 , x = -2, y = 4 ;] (Faças as contas !) .

Agora pelo item (ii) vimos que i-ésima coordenada do ponto Q corresponde a i-ésima componente do vetor [; \overrightarrow{OP} - 2 \overrightarrow{MP} ;] para i =1,...,n . Aplicando a este caso com n = 3 e sendo

[; \overrightarrow{OP} - 2 \overrightarrow{MP} = (2,1,3) -2(4,-3,1) = (-6,7,1) ;] obtemos

Q = (-6,7,1) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D