por crsjcarlos » Seg Jun 10, 2013 14:42
Determine

para que o seguinte subespaço de

tenha dimensão 1.

-
crsjcarlos
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 05, 2012 17:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MateusL » Qui Jul 18, 2013 00:14
Como o subespaço tem dimensão 1, então

são três vetores colineares.
Então

e

são múltiplos de

.
Vamos dizer que:


Então:

Multiplicando a primeira linha por

e subtraindo a primeira da segunda obteremos:

Como podemos ter qualquer valor para

e

, para que a equação acima seja verdadeira devemos ter:

De onde encontramos

e, finalmente,

.
Apesar de não vir ao caso, é fácil ver que

.
Abraço!
EDITADO: Vi a resolução abaixo e me dei conta que havia errado ao escrever o valor de

. Agora o valor está certo!
Editado pela última vez por
MateusL em Qui Jul 18, 2013 22:59, em um total de 1 vez.
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Jul 18, 2013 21:21
Outra forma que pensei ...
Chamando de

a matriz que está multiplicando a matriz coluna

. Observando que a última linha da matriz

é múltipla da primeira ,segue

é singular

é um sistema compatível e indeterminado .Em particular , se

, então o sistema linear homogêneo

admite outras soluções além da trivial (1) . Agora , seja

.Então ,

. Por outro lado ,

.
Definindo

, por (1)

,daí resulta

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- GEOMETRIA ANALÍTICA - AJUDA, POR FAVOR!
por taisa_salles » Sex Mar 21, 2014 08:56
- 1 Respostas
- 1124 Exibições
- Última mensagem por taisa_salles

Sex Mar 21, 2014 08:59
Geometria Analítica
-
- [GEOMETRIA ANALÍTICA]AJUDEM POR FAVOR!
por Miya » Seg Abr 13, 2015 15:58
- 1 Respostas
- 1535 Exibições
- Última mensagem por adauto martins

Ter Abr 14, 2015 15:58
Geometria Analítica
-
- Geometria - ajuda por favor
por Janffs » Sex Dez 28, 2012 15:07
- 1 Respostas
- 1269 Exibições
- Última mensagem por young_jedi

Sex Dez 28, 2012 17:32
Geometria Plana
-
- Ajuda! Geometria analítica(Retas paralelas)
por nitwcst » Ter Mar 20, 2012 19:51
- 1 Respostas
- 1198 Exibições
- Última mensagem por MarceloFantini

Ter Mar 20, 2012 20:47
Geometria Analítica
-
- Questão de Geometria Analítica - Reta, ajuda!
por arthurvct » Seg Mai 27, 2013 15:28
- 1 Respostas
- 1304 Exibições
- Última mensagem por e8group

Ter Mai 28, 2013 21:34
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.