• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra linear

Algebra linear

Mensagempor Well » Sáb Mar 02, 2013 21:26

Calcule o único valor de a que faz com que S = {(1, 1, 1) , (1, 0, 1) , (0, 2, 0) , (3, 2, a)} não seja um conjunto gerador de R3.

Eu resolvi e encontrei a=3 , que é a resposta correta. Mas gostaria de ver outra resolução e comparar com a minha.
Agradeço.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Algebra linear

Mensagempor young_jedi » Dom Mar 03, 2013 00:18

temos que os quatro elementos tem que ser linearmente independentes, para que possam gerar R3
no entanto do terceiro elemento é uma combinação dos dois primeiros

2(1,1,1)-2(1,0,1)=(0,2,0)

portanto se o terceiro for uma combinação linear dos outros dois então, eles não são capazes de gerar R3

portanto se a=3

2(1,1,1)+(1,0,1)=(3,2,3)

então o conjunto não é capaz de gerar R3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.