por ricardosanto » Qui Out 25, 2012 18:09
Escreva v se verdadeiro e f se falso. justifique sua resposta.
( ) dados um vetor a = 0, sempre existe x E R( x pertencente ao números reais) tal que xa seja um vetor unitário.
(
F ) Sejam u, v e w vetores tais que u = v+w logo u, v e w são lados de um triângulo.
creio que esta seja falsa, pois sei que dois vetores podem estar numa mesma reta e portanto não é possível formar um triangulo com apenas uma reta.( ) se 3u . v = 0 , então u= 0 ou v = 0.
( ) se ||a|| =3, o vetor unitário na direção do vetor -10a é

a
( ) Se a e b são vetores paralelos tais que

= 2 e

= 4, então a = 2b ou b-2a
Ps me desculpem se abusei do fórum postando 5 perguntas ( já li as regras), como são perguntas estilo " V ou F" creio que seja fácil de responder.
Obrigado.
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por MarceloFantini » Qui Out 25, 2012 18:36
As regras dizem para postar apenas uma questão por tópico para facilitar a busca posteriormente. Mesmo que sejam fáceis, você aglutina várias e dificulta o processo.
Sua resposta está correta, se

, com

, então

que não é um triângulo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Algebra Vetorial
por creberson » Qui Jan 31, 2013 21:54
- 1 Respostas
- 1318 Exibições
- Última mensagem por e8group

Sex Fev 01, 2013 20:35
Geometria Analítica
-
- Determinar x e y (Álgebra Vetorial)
por Carolziiinhaaah » Seg Mar 07, 2011 12:17
- 3 Respostas
- 4088 Exibições
- Última mensagem por LuizAquino

Seg Mar 07, 2011 18:49
Geometria Analítica
-
- Algebra Linear: Espaço Vetorial
por Caeros » Dom Nov 14, 2010 17:39
- 4 Respostas
- 5633 Exibições
- Última mensagem por andrefahl

Sáb Nov 27, 2010 18:16
Álgebra
-
- Algebra Linear - Espaço Vetorial
por Nillcolas » Qua Mar 16, 2011 17:05
- 1 Respostas
- 3952 Exibições
- Última mensagem por LuizAquino

Qua Mar 16, 2011 17:31
Álgebra
-
- algebra linear e espaços vetorial
por bebelo32 » Qui Jun 11, 2015 17:48
- 0 Respostas
- 1298 Exibições
- Última mensagem por bebelo32

Qui Jun 11, 2015 17:48
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.