• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porque a base {1, x, x², ..., x^n} define Pn?

Porque a base {1, x, x², ..., x^n} define Pn?

Mensagempor Hiperbanka » Qui Jul 02, 2009 22:22

Eu tava estudando no livro Algebra Linear do Boldrini, e é um livro muito fraco. Olha, eu até entendi a matéria; se ajuda a refrescar a memória de quem já estudou A.L. funciona assim:

Para uma base definir um espaço vetorial(como R, R², etc...) ela deve possuir apenas vetores L.I. e deve ter a mesma dimensão do espaço vetorial. Caso ela seja composta de vetores L.I. mas a dimensão dela seja menor, ela definirá um subespaço vetorial.

Mas daí o livro fala que o espaço vetorial Pn(dos polinômios) é definido pela base {(1, x, x²..., x^n).
Ora, até onde eu saiba, esse espaço vetorial Pn deveria ser definido pela seguinte base de dimensão infinita
[(1, 0, 0,..., 0), (0,x,0,...,0), (0,0,x²,...0), ..., (0,0,0,...,x^n)]
Porque com esses vetores na base podemos indicar coordenadas. Se não for assim, você não vai ter coeficientes diferentes para cada grau.

Por favor, se alguém conseguir, me explica porque (1,x,x²,...,x^n) define Pn.
Hiperbanka
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 02, 2009 22:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Porque a base {1, x, x², ..., x^n} define Pn?

Mensagempor Fred33 » Sáb Jul 11, 2009 09:00

Oi! Eu também estudo com o Boldrini e não gosto muito dele não. Meu professor indicou um bom livro pra estudar paralelamente, Álgebra Linear do David Poole.
Bem, quanto a sua dúvida... vou tentar te explicar como eu penso.
Um polinômio é um caso bem especial, ele vai ter sempre a mesma dimensão, independente do grau.
E pela definição de geradores, precisamos de um conjunto de polinômios que gere o polinômio desejado.
Considere:

Pn= ax^n + bx^n(-1) + ... + n

Temos um polinômio que é combinação linear de outros polinômios, nesse caso geral {1,...,x^(n-1), x^n}
Então, dizer que esse conjunto gera Pn é válido.

Espero que tenha ajudado.
Ah, me corrijam se estiver errado, eu também estou estudando isso ainda. =]
Fred33
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 11, 2009 08:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?