• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porque a base {1, x, x², ..., x^n} define Pn?

Porque a base {1, x, x², ..., x^n} define Pn?

Mensagempor Hiperbanka » Qui Jul 02, 2009 22:22

Eu tava estudando no livro Algebra Linear do Boldrini, e é um livro muito fraco. Olha, eu até entendi a matéria; se ajuda a refrescar a memória de quem já estudou A.L. funciona assim:

Para uma base definir um espaço vetorial(como R, R², etc...) ela deve possuir apenas vetores L.I. e deve ter a mesma dimensão do espaço vetorial. Caso ela seja composta de vetores L.I. mas a dimensão dela seja menor, ela definirá um subespaço vetorial.

Mas daí o livro fala que o espaço vetorial Pn(dos polinômios) é definido pela base {(1, x, x²..., x^n).
Ora, até onde eu saiba, esse espaço vetorial Pn deveria ser definido pela seguinte base de dimensão infinita
[(1, 0, 0,..., 0), (0,x,0,...,0), (0,0,x²,...0), ..., (0,0,0,...,x^n)]
Porque com esses vetores na base podemos indicar coordenadas. Se não for assim, você não vai ter coeficientes diferentes para cada grau.

Por favor, se alguém conseguir, me explica porque (1,x,x²,...,x^n) define Pn.
Hiperbanka
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 02, 2009 22:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Porque a base {1, x, x², ..., x^n} define Pn?

Mensagempor Fred33 » Sáb Jul 11, 2009 09:00

Oi! Eu também estudo com o Boldrini e não gosto muito dele não. Meu professor indicou um bom livro pra estudar paralelamente, Álgebra Linear do David Poole.
Bem, quanto a sua dúvida... vou tentar te explicar como eu penso.
Um polinômio é um caso bem especial, ele vai ter sempre a mesma dimensão, independente do grau.
E pela definição de geradores, precisamos de um conjunto de polinômios que gere o polinômio desejado.
Considere:

Pn= ax^n + bx^n(-1) + ... + n

Temos um polinômio que é combinação linear de outros polinômios, nesse caso geral {1,...,x^(n-1), x^n}
Então, dizer que esse conjunto gera Pn é válido.

Espero que tenha ajudado.
Ah, me corrijam se estiver errado, eu também estou estudando isso ainda. =]
Fred33
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 11, 2009 08:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59