por tsigwt » Sex Ago 22, 2008 23:09
Olá pessoal, tudo bem!?
Como posso definir conjuntos de matrizes que são subespaços!?
Olha um exercício, desta forma:
Seja F um corpo e seja n um inteiro positivo (n>=2). Seja V o espaço vetorial das N x M matrizes sobre F. Quais dos seguintes conjuntos de matrizes A em V são subespaços de V?
(a) todas A inversíveis.
(b) todas A não-inversíveis.
(c) todas A tais que AB = BA, onde B é uma certa matriz fixa em V.
(d) todas A tais que A² = A.
Não quero a resolução toda do exercício, mas apenas uma ajuda para o começo, até eu pegar o jeito...
Obrigado,
Até mais, fique com Deus, paz de Jesus.
"Juntos somos mais que vencedores" (Rm 8:37)
-
tsigwt
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Ago 21, 2008 23:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ccomp.
- Andamento: cursando
por admin » Sáb Ago 23, 2008 23:52
Olá
tsigwt!
É uma regra geral utilizar letras minúsculas para índices e maiúsculas para matrizes.
Aqui você quis escrever assim?
Seja V o espaço vetorial das n x m matrizes sobre F
O enunciado está completo ou também há alguma restrição para m?
Na busca pela resolução, seria interessante testar as condições de subespaço para cada conjunto.
Há uma discussão aqui com alguns exemplos de testes:
http://www.ajudamatematica.com/viewtopic.php?f=117&t=296#p757Não são com matrizes, mas neste caso pegue elementos de cada conjunto para verificar se é fechado para as operações de soma e multiplicação por escalar.
Também será fundamental ter uma referência bibliográfica em Álgebra Linear.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6922 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- Espaço vetorial
por amr » Sex Abr 01, 2011 15:30
- 4 Respostas
- 7890 Exibições
- Última mensagem por Rosi7

Sáb Mai 30, 2015 00:16
Introdução à Álgebra Linear
-
- Reta no espaço
por Phisic » Qui Jul 21, 2011 13:58
- 8 Respostas
- 4168 Exibições
- Última mensagem por Phisic

Seg Jul 25, 2011 10:05
Álgebra Elementar
-
- CONICAS NO ESPACO
por celestepaixao » Dom Nov 13, 2011 11:43
- 3 Respostas
- 1710 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 21:10
Geometria Analítica
-
- PG e espaço percorrido
por LuRodrigues » Dom Abr 22, 2012 20:22
- 2 Respostas
- 6741 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2012 01:05
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.