Área destinada para assuntos gerais ou considerados off-topic, excluindo quaisquer propagandas comerciais ou anúncios.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por LuizAquino » Sáb Jul 30, 2011 13:51
Uma outra curva tão curiosa quanto a do tópico
Equação do Batman é a curva borboleta.
Ela representa o gráfico, em coordenadas polares, da função

.
curva-borboleta.png
Você não está autorizado a ver ou baixar esse anexo.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Neperiano » Sáb Ago 20, 2011 22:39
Ola
Hahaha, esses cara tem tempo, muito boa
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Assuntos Gerais ou OFF-TOPIC
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Função da curva S] Qual é Função desta curva?
por Joao Petrocelle » Qua Nov 14, 2012 14:45
- 7 Respostas
- 4136 Exibições
- Última mensagem por young_jedi

Qua Nov 14, 2012 21:19
Funções
-
- Comprimento de curva
por dsbonafe » Ter Out 13, 2009 16:39
- 1 Respostas
- 2624 Exibições
- Última mensagem por Camolas

Sex Mai 31, 2013 15:27
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento da curva
por Crist » Qui Nov 29, 2012 13:32
- 6 Respostas
- 3431 Exibições
- Última mensagem por young_jedi

Ter Dez 11, 2012 11:01
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento de Curva
por Marcossiva » Sex Jun 28, 2013 10:59
- 3 Respostas
- 2005 Exibições
- Última mensagem por Marcossiva

Sex Jun 28, 2013 11:53
Cálculo: Limites, Derivadas e Integrais
-
- Comprimento de curva
por Danilo » Seg Nov 25, 2013 22:02
- 1 Respostas
- 1331 Exibições
- Última mensagem por Bravim

Ter Nov 26, 2013 03:26
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.