• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Desconto Composto]

[Desconto Composto]

Mensagempor GMartins » Seg Abr 02, 2012 11:15

Um título de valor nominal R$ 24.200,00 será descontado 2 meses antes do vencimento, com taxa composta de desconto de 10% ao mês. Sejam "D" o valor do desconto comercial composto e "d" o valor do desconto racional composto. A diferença D - d, em reais, vale:
(a) 399,00 (b) 398,00 (c) 397,00 (d) 396,00 (e) 395,00
GMartins
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Abr 01, 2012 20:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: formado

Re: [Desconto Composto]

Mensagempor Fabiano Vieira » Sáb Abr 21, 2012 22:19

Desconto simples:

24200*(1 - 0,1)^2 = 0,81. Então 24200*0,81 = 19.602,00.

24200 - 19602 = 4598

Desconto racional:

Imagem

4598 - 4200 = 398
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}