Exemplo:
Preciso calcular o valor presente (PV) a uma taxa de juros compostos de 12% ao ano durante o período de 3 anos de um valor futuro de R$ 100,00 sem nenhum pagamento durante o período.
Método 1 - Equivalência de Taxas - Calculo da taxa para 3 anos para descontar do valor futuro:
i3a = ((1+ ia)^n) -1 //Fórmula Equivalência de Taxas
i3a = ((1+ 0,12)^3) -1
i3a = 0,404928 = 40,49% //% de Desconto
PV = 100,00 * ( 1 - 0,404928) //descontar o valor da taxa no valor futuro
PV = 100,00 * 0,595072
PV = 59,5072 //Valor Presente Final
Método 2 - Valor Presente - Calculo do Valor Presente
PV = FV / (1+i)^n //Fórmula Valor Presente
PV = 100,00 / ( 1+ 0,12)^3
PV = 71,1780 //Valor Presente Final
% de Desconto = ((71,1780 / 100,00) -1) *100
% de Desconto = -28,822
Enfim, o método 1 resultou em 40,49% de desconto sobre o valor futuro enquanto no método 2 resultou em somente 28,82% de desconto!!
Alguém tem alguma ideia para essa charada?
Obrigado

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.