• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor Lulumatematica » Seg Jun 27, 2016 01:25

1. Havendo nutrientes suficientes, o crescimento de uma população P de bactérias pode ser modelado em função do tempo t pela equação P(t) = P0(1 + i)^t onde P0 é a população inicial e i é a taxa de crescimento por período. A linha tracejada no gráfico ao lado mostra a função P(t) = 100 ? 1,15^t, que corresponde a uma população inicial de 100 bactérias que aumenta 15% a cada período.

Escolha a alternativa que melhor corresponde à linha tracejada.

a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.

b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.

c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.

d. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = ?.

e. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = 800.

2. Um modelo um pouco mais realista levaria em conta a capacidade máxima do habitat, representada por K. A equação então fica:
P(t) =K(1 + i)^t/K/P0 + (1 + i)^t -1
A linha cheia no gráfico mostra a função P(t) =600?1,15^t/6+1,15^t?1,ou seja, as mesmas 100 bactérias iniciais crescendo inicialmente a 15% por período, porém agora a capacidade máxima do habitat é 600.
Escolha a alternativa que melhor corresponde à linha cheia.

a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.

b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.

c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.

d. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = ?.

e. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = 800.

3. Geometricamente, a derivada representa

a. os valores de x onde o gráfico da função corta o eixo x.

b. a inclinação da reta tangente ao gráfico da função em um ponto dado.

c. uma parábola.

d. os valores de y onde o gráfico da função corta o eixo y.

e. a soma dos quadrados dos catetos.
Anexos
mate.jpg
grafico
Lulumatematica
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 27, 2016 01:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Agronomia
Andamento: cursando

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D