• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa nominal e Taxa Efetiva

Taxa nominal e Taxa Efetiva

Mensagempor Danilo Dias Vilela » Qui Out 15, 2009 12:11

Minha dúvida é sobre se há uma outra forma de resolver o seguinte exercício:

1) A taxa efetiva anual de 50%, no sistema de juros compostos, equivale a uma taxa nominal de i % ao semestre, capitalizada bimestralmente. O valor de i é de aproximadamente:

a) 18
b) 19
c) 20
d) 21
e) 22

Minha resolução foi a seguinte: eu peguei o valor do meio e achei a taxa efetiva anual de aproximadamente 41, 85%. Sendo assim não corresponde à taxa efetiva anual de 50%. Assim fiz: peguei o valor de 20% dividi por 3 (1 semestre tem 3 bimestres) e achei uma taxa de 6,666%; depois achei a taxa correspondente anual de 41, 85%. Para eu ter 50% eu teria que aumentar o numerador para 21% e assim aumentar a minha taxa bimestral para 7%. O resultado final que encontrei foi de uma taxa anual efetiva de 50.07% ou seja 50%. O gabarito consta como letra d. Se alguém tiver um jeito sem precisar analisar as aternativas por favor me passem. Obrigado.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Taxa nominal e Taxa Efetiva

Mensagempor marcelo ebm » Ter Nov 24, 2009 22:11

Primeiro para você entender a diferença das taxas observe o exemplo:
Digamos que eu lhe dê um cartão de crédito e a taxa de juros do cartão seja 3% ao mês. Qual é a taxa anual que realmente está sendo cobrada de você?? 36%?? Bem, não é. Ela é realmente 42.57%.

Taxa Nominal significa "no nome somente". Esta é chamada algumas vezes de taxa entre aspas.
Taxa Periódica A quantia de juros que é cobrada de você a cada período, como todo mês.
Taxa Anual Efetiva A taxa que realmente é cobrada de você com base anual. Lembre-se que você está pagando juros sobre juros.

No exemplo acima

A Taxa Nominal é 36% (Taxa Nominal = Taxa Efetiva x Número de Períodos, então Tn =3 x12), mas lembre-se deve observar o período de capitalização pedido.
A Taxa Periódica é 3% (foi cobrado 3% de juros sobre o seu saldo a cada mês)
A Taxa Anual Efetiva é 42.57%

No seu exemplo:
A Taxa Efetiva Anual é 50%
A Taxa Períodica será de 6,991319% (referente a texa efetiva Bimestral, e sempre em 6 casas decimais para maior aproximação)
A Taxa Nominal Semestral 20,973958% (A Taxa Nominal será a Taxa Efetiva vezes o número de periodos)

Vamos lá.

Ele quer a taxa nominal referente a capitalização bimestral, (lembre-se que tem que observar o período de capitalização pedido).
Vamos Achar a taxa efetiva bimestral

ib = (1 + i) elevado a 2/12 - 1 onde 2/12 é a razão procurada, pois você procura uma taxa bimestral 12 meses, e você tem a taxa anual 12 meses.
ib = (1,50) elevado a 0,166667 - 1
ib = 6,991319% ao bimestre

Agora é só aplicar:
Taxa Nominal = Taxa Efetiva x Nº. de Períodos
Taxa Nominal = 6,991319 x 3 ( 3 bimestres = 6 meses)
Taxa Nominal = 20,973958% (Pediu-se a taxa aproximada, e a mais aproximada é a letra d - 21
marcelo ebm
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Nov 24, 2009 21:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias Contábeis
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D