• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa nominal e Taxa Efetiva

Taxa nominal e Taxa Efetiva

Mensagempor Danilo Dias Vilela » Qui Out 15, 2009 12:11

Minha dúvida é sobre se há uma outra forma de resolver o seguinte exercício:

1) A taxa efetiva anual de 50%, no sistema de juros compostos, equivale a uma taxa nominal de i % ao semestre, capitalizada bimestralmente. O valor de i é de aproximadamente:

a) 18
b) 19
c) 20
d) 21
e) 22

Minha resolução foi a seguinte: eu peguei o valor do meio e achei a taxa efetiva anual de aproximadamente 41, 85%. Sendo assim não corresponde à taxa efetiva anual de 50%. Assim fiz: peguei o valor de 20% dividi por 3 (1 semestre tem 3 bimestres) e achei uma taxa de 6,666%; depois achei a taxa correspondente anual de 41, 85%. Para eu ter 50% eu teria que aumentar o numerador para 21% e assim aumentar a minha taxa bimestral para 7%. O resultado final que encontrei foi de uma taxa anual efetiva de 50.07% ou seja 50%. O gabarito consta como letra d. Se alguém tiver um jeito sem precisar analisar as aternativas por favor me passem. Obrigado.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Taxa nominal e Taxa Efetiva

Mensagempor marcelo ebm » Ter Nov 24, 2009 22:11

Primeiro para você entender a diferença das taxas observe o exemplo:
Digamos que eu lhe dê um cartão de crédito e a taxa de juros do cartão seja 3% ao mês. Qual é a taxa anual que realmente está sendo cobrada de você?? 36%?? Bem, não é. Ela é realmente 42.57%.

Taxa Nominal significa "no nome somente". Esta é chamada algumas vezes de taxa entre aspas.
Taxa Periódica A quantia de juros que é cobrada de você a cada período, como todo mês.
Taxa Anual Efetiva A taxa que realmente é cobrada de você com base anual. Lembre-se que você está pagando juros sobre juros.

No exemplo acima

A Taxa Nominal é 36% (Taxa Nominal = Taxa Efetiva x Número de Períodos, então Tn =3 x12), mas lembre-se deve observar o período de capitalização pedido.
A Taxa Periódica é 3% (foi cobrado 3% de juros sobre o seu saldo a cada mês)
A Taxa Anual Efetiva é 42.57%

No seu exemplo:
A Taxa Efetiva Anual é 50%
A Taxa Períodica será de 6,991319% (referente a texa efetiva Bimestral, e sempre em 6 casas decimais para maior aproximação)
A Taxa Nominal Semestral 20,973958% (A Taxa Nominal será a Taxa Efetiva vezes o número de periodos)

Vamos lá.

Ele quer a taxa nominal referente a capitalização bimestral, (lembre-se que tem que observar o período de capitalização pedido).
Vamos Achar a taxa efetiva bimestral

ib = (1 + i) elevado a 2/12 - 1 onde 2/12 é a razão procurada, pois você procura uma taxa bimestral 12 meses, e você tem a taxa anual 12 meses.
ib = (1,50) elevado a 0,166667 - 1
ib = 6,991319% ao bimestre

Agora é só aplicar:
Taxa Nominal = Taxa Efetiva x Nº. de Períodos
Taxa Nominal = 6,991319 x 3 ( 3 bimestres = 6 meses)
Taxa Nominal = 20,973958% (Pediu-se a taxa aproximada, e a mais aproximada é a letra d - 21
marcelo ebm
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Nov 24, 2009 21:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias Contábeis
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?