As equações de demanda e de oferta de um produto no mercado são, respectivamente, x² + p - 25 = 0 e x² + x - p + 4 = 0. Onde p é o preço unitário e x é a quantidade.
a) Faça o esboço das curvas de demanda e de oferta no mesmo conjunto de eixos.
b) Determine o preço mais alto a partir do qual passa haver demanda o produto.
c) Ache a demanda se o produto for grátis
d) Ache o preço mais baixo a partir do qual o produto passa a ser ofertado.
e) Determine a quantidade e o preço de equilíbrio.
Bom, minha dúvida é quanto aos gráficos. Posso estimar qualquer valor na hora de traça-los? Sei que o grafico de demanda vai ser uma curva para baixo e o de oferta uma curva para cima. Mas não sei que valores atribuir para formar o gráfico
Na letra B, o preço seria 0, não?
Na letra C, o produto é grátis, logo x = 0
Na letra d, o preço mais baixo seria 0 também, não?
E letra E, se eu igualar as equações em função de p, consigo achar.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)