• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Juros simples, calcular taxa;

Juros simples, calcular taxa;

Mensagempor elisamaria » Qua Mar 11, 2015 15:41

Um certo capital foi aplicado por 5 meses. Ao fim desse prazo, só de juros simples, o aplicador recebeu o triplo do dinheiro. Qual é a taxa mensal dessa aplicação?

a) 0,72%
b) 72%
c) 0,6%
d) 60%
elisamaria
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 09, 2015 16:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Juros simples, calcular taxa;

Mensagempor Baltuilhe » Dom Mar 15, 2015 17:00

Boa tarde!

Como obteve o triplo do capital como juros, aplicamos a fórmula de juros simples:

\\J=Cin\\
3C=Ci\cdot 5\\
3=5i\\
i=\frac{3}{5}\times 100\%\\
i=60\%\text{ a.m.}

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}