• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Juros Compostos] Questão concurso PBGÁS - 2007

[Juros Compostos] Questão concurso PBGÁS - 2007

Mensagempor tigerwong » Sáb Jun 30, 2012 01:16

Como Resolver?

24) Dois capitais foram aplicados na mesma data numa instituição financeira com prazo de dois anos. Sabendo-se que a diferença entre o maior e o menor montava a R$10.000,00 na data da aplicação e que aumentou para R$12.100,00 no vencimento, a taxa anula de juros compostos corresponde a:

A 8,5%
B 9%
C 9,5%
D 10,0%
E 11,0%
tigerwong
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jun 24, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: [Juros Compostos] Questão concurso PBGÁS - 2007

Mensagempor DanielFerreira » Ter Ago 28, 2012 19:41

tigerwong escreveu:Como Resolver?

24) Dois capitais foram aplicados na mesma data numa instituição financeira com prazo de dois anos. Sabendo-se que a diferença entre o maior e o menor montava a R$10.000,00 na data da aplicação e que aumentou para R$12.100,00 no vencimento, a taxa anula de juros compostos corresponde a:

A 8,5%
B 9%
C 9,5%
D 10,0%
E 11,0%

CAPITAL I:

Capital (P): x
Prazo (n): 2 anos
Taxa (i) = ?
Montante: S_1

\\ S = P(1 + i)^n \\\\ \boxed{S_1 = x(1 + i)^2}


CAPITAL II:

Capital (P): y
Prazo (n): 2 anos
Taxa (i) = ?
Montante: S_2

\\ S = P(1 + i)^n \\\\ \boxed{S_2 = y(1 + i)^2}

tigerwong escreveu:... Sabendo-se que a diferença entre o maior e o menor montava a R$10.000,00 na data da aplicação...

x - y = 10000

tigerwong escreveu:... e que aumentou para R$12.100,00 no vencimento, ...

\\ S_1 - S_2 = 12100 \\\\ x(1 + i)^2 - y(1 + i)^2 = 12100


Do sistema:

\\ \begin{cases} x - y = 10000 \\ x(1 + i)^2 - y(1 + i)^2 = 12100\end{cases} \\\\\\  \begin{cases} x - y = 10000 \\ (1 + i)^2[x - y] = 12100\end{cases}


Temos:

\\ (1 + i)^2 \cdot 10000 = 12100 \\\\ (1 + i)^2 = 1,21 \\\\ (1 + i) = \sqrt{1,21} \\\\ 1 + i = 1,1 \\\\ \boxed{\boxed{i = 0,1}}

Ou seja,

i = 10%

Espero ter ajudado!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?