• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Porcentagem

Porcentagem

Mensagempor geriane » Sáb Abr 28, 2012 22:06

Nas duas semanas seguintes à inauguração de mais uma loja de uma rede de supermercados, os produtos foram colocados à venda com preços 20% menores que os das demais lojas da rede. No final da promoção, o encarregado da loja determinou que o preço de cada mercadoria fosse aumentado em 20% para voltar aos preços anteriores, e por isso levou uma bronca do gerente. Explique o equívoco do encarregado, considerando uma mercadoria que na promoção custava R$ 80,00.




Eu resolvi pela regra de três simples, mas eu não estou compreendendo a parte que ele cita do equivoco. Alguém poderia me ajudar? Pela resolução eu obtive o resultado R$ 96,00, pois como o preço que ele deu já estava na promoção (R$80,00).
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Porcentagem

Mensagempor DanielFerreira » Sáb Abr 28, 2012 22:46

geriane escreveu:Nas duas semanas seguintes à inauguração de mais uma loja de uma rede de supermercados, os produtos foram colocados à venda com preços 20% menores que os das demais lojas da rede. No final da promoção, o encarregado da loja determinou que o preço de cada mercadoria fosse aumentado em 20% para voltar aos preços anteriores, e por isso levou uma bronca do gerente. Explique o equívoco do encarregado, considerando uma mercadoria que na promoção custava R$ 80,00.
Eu resolvi pela regra de três simples, mas eu não estou compreendendo a parte que ele cita do equivoco. Alguém poderia me ajudar? Pela resolução eu obtive o resultado R$ 96,00, pois como o preço que ele deu já estava na promoção (R$80,00).

Imagine que o preço nas outras lojas fosse R$ x,00;
então, a loja que acabara de inaugurar, vendia-os por:
x - \frac{20x}{100} =

\frac{80x}{100} =

\frac{8x}{10}

Na promoção, o produto valia R$ 80,00, segundo o enunciado:
\frac{8x}{10} = 80

\frac{x}{10} = 10

x = 100

Ou Seja, o produto custava R$ 100,00 nas outras lojas, mas, a nova loja vendia por R$ 80,00 (com 20% de desconto)

Portanto, falta-nos determinar quanto passou a custar após o reajuste de 20%.

80 + \frac{20}{100} . 80 =

80 + \frac{2.8}{1} =

96

Geriane,
note que as outras lojas vendem por R$ 100,00 e o encarregado (com seu reajuste) vende os produtos por R$ 96,00 - R$ 4,00 a menos!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Porcentagem

Mensagempor geriane » Dom Abr 29, 2012 00:25

Obrigada DanJr5!!! Agora conseguir ver o que estava faltando e compreendi perfeitamente!!! Valeu :)
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Porcentagem

Mensagempor DanielFerreira » Dom Abr 29, 2012 00:28

geriane escreveu:Obrigada DanJr5!!! Agora conseguir ver o que estava faltando e compreendi perfeitamente!!! Valeu :)

Não há de quê!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}