• Anúncio Global
    Respostas
    Exibições
    Última mensagem

desconto bancário

desconto bancário

Mensagempor Alessandra Cezario » Qua Fev 29, 2012 17:27

Olá!Só não entendi onde devo colocar ou melhor, tirar os 10% de saldo médio do valor da operação. Se puderem resolver...
Um banco realiza operações de desconto de duplicatas a uma taxa de desconto comercial de 12% a . a., mais IOF de 1,5% a . a. e 2% de taxa relativa a despesas administrativas. Além disto, a título de reciprocidade, o banco exige um saldo médio de 10% do valor da operação. Nestas condições, para uma duplicata de valor nominal $50000,00 que vai ser descontada 3 meses antes do vencimento, pede-se calcular a taxa efetiva de juros da operação. A resp. é 6,06% eu encontrei 5,67%, porém ignorando o item dos 10%,este foi meu erro?
Alessandra Cezario
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Mar 31, 2011 19:25
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em Português
Andamento: formado

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}