• Anúncio Global
    Respostas
    Exibições
    Última mensagem

desconto bancário

desconto bancário

Mensagempor Alessandra Cezario » Qua Fev 29, 2012 17:27

Olá!Só não entendi onde devo colocar ou melhor, tirar os 10% de saldo médio do valor da operação. Se puderem resolver...
Um banco realiza operações de desconto de duplicatas a uma taxa de desconto comercial de 12% a . a., mais IOF de 1,5% a . a. e 2% de taxa relativa a despesas administrativas. Além disto, a título de reciprocidade, o banco exige um saldo médio de 10% do valor da operação. Nestas condições, para uma duplicata de valor nominal $50000,00 que vai ser descontada 3 meses antes do vencimento, pede-se calcular a taxa efetiva de juros da operação. A resp. é 6,06% eu encontrei 5,67%, porém ignorando o item dos 10%,este foi meu erro?
Alessandra Cezario
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Mar 31, 2011 19:25
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em Português
Andamento: formado

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.