• Anúncio Global
    Respostas
    Exibições
    Última mensagem

juros simples

juros simples

Mensagempor karlinhaa » Ter Dez 07, 2010 11:20

determinar o capital necessario para produzir um montante de R$798,000 no final de um ano e meio, aplicado a uma taxa de 15% ao trimesmtre.
Nesse caso eu teria que transformar o periodo de capitalização que esta ao ano para semestres ou para meses corridos?
fiz a transformação para semestres, no caso um ano e meio equivale a 6 semestres.Mas não consegui chegar a resposta correta que seria 420,000.Fiz da seguinte forma:
M= C(1+i.n)
798.000=C(1+0.15.6)
798.000=C(1+0,9)
C=798.000/1,09
C=732.110
sera que alguem poderia me ajudar a descobrir onde esta o erro?
karlinhaa
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Nov 22, 2010 14:16
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologico em gestao financeira
Andamento: cursando

Re: juros simples

Mensagempor fttofolo » Ter Dez 07, 2010 21:19

Não tem nenhum erro, se vc transformar em meses corridos vai dar a mesma resposta.
Acho que a resposta 420 não está correta, e sim a resposta q vc fez.
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: juros simples

Mensagempor Rogerio Murcila » Qua Dez 08, 2010 12:45

Olá Karlinha

Tem um um pequeno erro na tua conta sim, veja abaixo:

M= C(1+i.n)
798.000=C(1+0.15.6)
798.000=C(1+0,9)
C=798.000/1,90 (aqui estava seu erro)
C=420.000

Me permite uma pergunta?
Num curso de Graduação em Tecnologia de Gestão Financeira não é permitido e incentivado o uso de uma calculadora financeira e/ou Excel ?
Se sim, saiba que é possível calcular também juros simples na HP-12C ou qualquer outra calculadora financeira.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: juros simples

Mensagempor karlinhaa » Qui Dez 09, 2010 12:36

Muito obg pela ajuda.Sim, no curso é permitido o uso da Hp para resolução dos exercicios , porem neste caso em especifico o professor pediu os 2 calculos tanto com a formula, tanto com a Hp.
karlinhaa
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Nov 22, 2010 14:16
Formação Escolar: GRADUAÇÃO
Área/Curso: tecnologico em gestao financeira
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?