Em geral, apenas enunciados de exercícios.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por Julie » Qua Jul 28, 2010 10:00

Num dia, um pintor pinta 2/5 de um muro.No dia seguinte,pinta mais 51 metros do muro.Desse modo,pintou 7/9 do muro todo.Quantos metros tem o muro?
OBS:Tenho dificuldade em interpretar o problema e assim não consigo desenvolve-lo.Sera que tem alguma regra em geral
para que eu consiga montar não só esse como outros.
*Quando montado o problema eu consigo desenvolve-lo*
-
Julie
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Jul 27, 2010 00:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestão em recursos humanos
- Andamento: cursando
por Julie » Qua Jul 28, 2010 10:06
Julie escreveu:
Num dia, um pintor pinta 2/5 de um muro.No dia seguinte,pinta mais 51 metros do muro.Desse modo,pintou 7/9 do muro todo.Quantos metros tem o muro?
OBS:Tenho dificuldade em interpretar o problema e assim não consigo desenvolve-lo.Sera que tem alguma regra em geral
para que eu consiga montar não só esse como outros.
*Quando montado o problema eu consigo desenvolve-lo*
-
Julie
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Jul 27, 2010 00:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestão em recursos humanos
- Andamento: cursando
por Firstlovi » Sex Jun 10, 2016 05:54
You take the information from this place, why I could not find it.
-
Firstlovi
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jun 10, 2016 05:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
-
Voltar para Tópicos sem Interação (leia as regras)
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Numeros racionais
por silvia fillet » Qua Out 19, 2011 20:06
- 369 Respostas
- 281615 Exibições
- Última mensagem por Estrela_36

Sáb Dez 03, 2011 17:41
Equações
-
- números: racionais
por Victor Gabriel » Dom Mai 12, 2013 14:35
- 0 Respostas
- 2832 Exibições
- Última mensagem por Victor Gabriel

Dom Mai 12, 2013 14:35
Álgebra Elementar
-
- Conjunto dos números racionais.
por scggomes » Sex Fev 18, 2011 10:38
- 4 Respostas
- 38198 Exibições
- Última mensagem por scggomes

Sex Fev 18, 2011 16:17
Álgebra Elementar
-
- Adição e Subtração de números racionais
por LuizCarlos » Sex Mar 16, 2012 20:09
- 1 Respostas
- 4434 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 22:29
Álgebra Elementar
-
- Numero irracional entre numeros racionais
por Roni Martins » Qua Fev 24, 2010 10:36
- 1 Respostas
- 5968 Exibições
- Última mensagem por Molina

Qua Fev 24, 2010 13:18
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.