• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aritmética

Aritmética

Mensagempor Renatinha » Seg Nov 08, 2010 19:46

a)Prove que raiz de 3 é irracional.
b)Seja p um número primo positivo. Mostre quea raiz p é um número irracional.


2)
a) É verdade que a soma de dois irracionais é sempre irracional? Prove ou dê um
contra-exemplo.
b) (2,0) É verdade que o produto de dois irracionais é sempre irracional? Prove ou dê um
contra-exemplo.
Renatinha
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Nov 01, 2010 01:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Aritmética

Mensagempor MarceloFantini » Seg Nov 08, 2010 20:29

2a) Contra-exemplo: \sqrt{2} é irracional. - \sqrt{2} é irracional; porém \sqrt{2} + (- \sqrt{2}) = 0 que é racional.

2b) Contra-exemplo: \sqrt{2} \cdot \sqrt{2} = 2 que é racional.

Os dois primeiros basta procurar no google, são demonstrações relativamente simples (mas que eu não sei de cabeça).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Aritmética

Mensagempor Molina » Seg Nov 08, 2010 23:01

Boa noite, Renata.
Renatinha escreveu:b)Seja p um número primo positivo. Mostre quea raiz p é um número irracional.

Acabei de demonstrar esta sua dúvida em outro tópico: viewtopic.php?f=106&t=3193

A raiz de 3 sai de forma análoga.

Qualquer dúvida, informe!

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}