por Amparo » Dom Mar 09, 2008 16:26
Seja a Considere a seqüência an = n^5 + n^3 + n / n^3 - 1
(a) Determine os quatro primeiros termos da seqüência {an}? ;
Obs.: N = { 1, 2, 3, ... }
(b) Discuta, justificando todos os passos, se a seqüência converge ou não ;
-
Amparo
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Mar 09, 2008 10:19
- Área/Curso: Estudante
- Andamento: cursando
por Cah » Seg Jan 31, 2011 13:21
Por favor, me ajudem estou com dificuldades na resolução de um problema.Para estudarmos a taxa de crescimento de termos sucessivos, construímos a sequência bn = an+ 1/an .Assim sendo encontre b, tal que bn tenda a b.
Ou seja, mostre que b converge para 1 + ?5/2. Sei que tenho que fazer pelo lim bn = lim b (n + 1), mas já faz um bom tempo que não faço tal exercícios
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por nietzsche » Sex Set 02, 2011 00:42
amparo,
divida os termos de an por n^3 em "cima e embaixo da fração" e tente calcular o limite, vc verá que an diverge. para calcular os primeiros termos basta trocar n pelos números 1, depois 2, depois 3, depois 4. para cada valor de n, vc tem um valor para an. por exemplo se n=0, então a0 = 0.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sequencia] Calcular limite de sequencia por definição
por amigao » Ter Abr 15, 2014 15:15
- 4 Respostas
- 3986 Exibições
- Última mensagem por e8group

Dom Mai 11, 2014 17:09
Sequências
-
- Sequencia
por Abner » Qua Jan 26, 2011 19:15
- 1 Respostas
- 2405 Exibições
- Última mensagem por Neperiano

Qua Ago 31, 2011 18:43
Geometria Plana
-
- [Sequência]
por elizangelasss20 » Qua Abr 11, 2012 19:12
- 4 Respostas
- 2886 Exibições
- Última mensagem por elizangelasss20

Qua Abr 11, 2012 20:52
Sequências
-
- Sequência
por GrazielaSilva » Qui Nov 01, 2012 10:20
- 1 Respostas
- 3922 Exibições
- Última mensagem por young_jedi

Qui Nov 01, 2012 13:49
Progressões
-
- Sequencia
por GrazielaSilva » Ter Nov 06, 2012 10:29
- 1 Respostas
- 3076 Exibições
- Última mensagem por e8group

Ter Nov 06, 2012 11:59
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.