por Janoca » Qua Jul 23, 2014 13:41
A série a seguir é convergente ou divergente? Porque?
![\sum_{i=1}^{\infty}\frac{1}{i\sqrt[]{i}} \sum_{i=1}^{\infty}\frac{1}{i\sqrt[]{i}}](/latexrender/pictures/2570c30153ac9110cc68ebf2d48a725b.png)
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Russman » Qua Jul 23, 2014 20:45
Converge!
Use o teste da integral. Note que

é decrescente e contínua em
![\left [ 1,\infty \right ] \left [ 1,\infty \right ]](/latexrender/pictures/f58707b06a79707a993646fb2fd8d827.png)
. Daí, como a integral

converge(
mostre isso), então a série é convergente.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 8525 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 8855 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
-
- Série
por jccp » Seg Dez 16, 2013 01:44
- 3 Respostas
- 2520 Exibições
- Última mensagem por Russman

Seg Dez 16, 2013 20:19
Cálculo: Limites, Derivadas e Integrais
-
- Duvida da 4 serie...rs
por EdegarRodrigues » Sex Mar 05, 2010 23:16
- 1 Respostas
- 2362 Exibições
- Última mensagem por Cleyson007

Sáb Mar 06, 2010 12:19
Problemas do Cotidiano
-
- Série - Cálculo 2
por Questioner » Dom Mai 23, 2010 13:25
- 0 Respostas
- 1351 Exibições
- Última mensagem por Questioner

Dom Mai 23, 2010 13:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Balanar - Seg Ago 09, 2010 04:01
Simplifique a expressão com radicais duplos abaixo:
Resposta:
Dica:
(dica : igualar a expressão a

e elevar ao quadrado os dois lados)
Assunto:
Simplifique a expressão com radicais duplos
Autor:
MarceloFantini - Qua Ago 11, 2010 05:46
É só fazer a dica.
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Soprano - Sex Mar 04, 2016 09:49
Olá,
O resultado é igual a 1, certo?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.