por Jovani Souza » Sex Jun 07, 2013 18:05
Provar que o conjunto dos inteiros positivos não é limitada superiormente.
dica:
provar que se é limitada superiormente então teria um supremo ? (Como mostrar isso).
Logo dado um ?=1>0 existe z E Z+ tal que ?-1<z. Daqui ?<z+1, z+1 E Z+ o que contradiz o fato de que ? é supremo de Z+.
Como posso provar passo por passo?
Grato!
-
Jovani Souza
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Mai 18, 2013 12:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divisão de inteiros positivos
por DanielFerreira » Dom Set 16, 2012 20:59
- 2 Respostas
- 5812 Exibições
- Última mensagem por DanielFerreira

Dom Set 16, 2012 21:12
Desafios Médios
-
- Números positivos
por plugpc » Qua Mai 20, 2009 19:31
- 3 Respostas
- 2144 Exibições
- Última mensagem por Molina

Qua Mai 20, 2009 22:39
Álgebra Elementar
-
- [Quantidade de divisores positivos]
por Gustavo Gomes » Seg Dez 17, 2012 22:44
- 2 Respostas
- 1800 Exibições
- Última mensagem por Gustavo Gomes

Ter Dez 18, 2012 21:32
Teoria dos Números
-
- Se os números reais positivos x e y forem tais que:
por andersontricordiano » Seg Abr 11, 2011 15:25
- 7 Respostas
- 5385 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 12, 2011 12:31
Logaritmos
-
- Inteiros
por Gaussiano » Sex Dez 30, 2011 12:14
- 0 Respostas
- 891 Exibições
- Última mensagem por Gaussiano

Sex Dez 30, 2011 12:14
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.