por ulisses123 » Sex Jun 20, 2014 15:23
A sucessão (Zn ) é definida por Zn =(-1)^n/3n + (-1)^n-1
24.1 Calcule a somados seus quatro primeiros termos.
24.2 Prove que (Zn )é limitada.
24.3 Prove que (Zn ) não é convergente
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
por e8group » Sex Jun 20, 2014 15:48
No primeiro não há muito o que fazer ; só computar

. No segundo , tome módulo e use desigualdade triangular para obter

. Para o último, sugiro que trabalhe com as duas sub-sequências

e

, oque se pode dizer sobre seus limites ??
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ulisses123 » Dom Jun 29, 2014 14:34
olá, eu não sei o que são subsucessoes,nem entendi acerca da desigualdade triangular,pode me ajudar por favor
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
por e8group » Dom Jun 29, 2014 16:25
(I) Desigualdade triangular :
Na geometria Euclidiana , o comprimento de um lado de um triângulo é sempre menor que a soma dos demais comprimentos .Em analogia , tem-se que
dados

reais quaisquer , vale a desigualdade

.
(II) Dada uma sequência (ou sucessão)

( ou apenas denotando

) .Uma subsequencia desta sequência, a grosso modo é uma nova sequência com termos da primeira sequência e estes termos respeita a ordenação da sequência original .
Ex.:

é uma subsequência de

(iii) Uma sequência

é limitada se existe

tal que

(

) .
A distância de

à origem (0 ) nunca será superior a

.
Para resolver o exercício . Tome

e

. Aplique a desigualdade e determine algum

. (Isto provará que ela é limitada)
E calcule os limites das duas subsequências de termos com índice par e impar ; mostre que os limites diferem o que equivale dizer que sequência não converge .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ulisses123 » Dom Jul 06, 2014 12:10
olá, santiago por favor, resolva esses dois itens: provar que se ela é limitada, e que não estou a conseguir fazer
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
por e8group » Dom Jul 06, 2014 13:23
Note que ,

e

.
Segue-se que

, para todo

o que prova que

é limitada .
Quanto a divergência da sequência , basta notar que computando o limite da subsequencia

vamos obter

.
Por outro lado , computando o limite da outra subsequência

teremos

(verifique !)
Hipótese

tese (Se uma sequência converge , então toda subsequência converge para o mesmo limite )
Negação da tese

negação da hipótese ( existe duas subsequências distintas 'convergindo' para limites distintos o que implica que a sequência não converge )
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por ulisses123 » Dom Jul 06, 2014 15:26
olá,santiago muito obrigado, somente por favor me ajuda nessa: sendo Un=n-(-1)^n, como provar que ela é não limitada,
-
ulisses123
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 20, 2014 14:48
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso tecnico em gestao
- Andamento: formado
por e8group » Dom Jul 06, 2014 16:11
Ok , Mas ,na próxima vez utilize o sistema LaTeX e crie um novo tópico para um novo exercício .
Proposta 1 ( Prova por contradição )

é limitada se é limitada inferiormente e superiormente .
Suponha (por absurdo )

limitada e portanto

limitada superiormente .
Seja

uma cota superior a qual cumpre com

para todo

natural .
Tome qualquer

natural ( propriedade arquimediana assegura a des.) . Note que ,

e

que contradiz a suposição .
Portanto

não é limitada superiormente o que implica que não é limitada .
Proposta 2 :
Pela desigualdade triangular
![n= |n| = | [n -(-1)^n ] + (-1)^n| \leq |u_n| + |(-1)^n| = |u_n| + 1 n= |n| = | [n -(-1)^n ] + (-1)^n| \leq |u_n| + |(-1)^n| = |u_n| + 1](/latexrender/pictures/d76365adffa16ea2994f60fc8adfe743.png)
e portanto

. Passando ao limite com

e notando que

o resultado segue .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- sucessões
por joanafrancisca » Ter Jul 24, 2012 23:23
- 2 Respostas
- 2076 Exibições
- Última mensagem por joanafrancisca

Qua Jul 25, 2012 01:53
Cálculo: Limites, Derivadas e Integrais
-
- Limities sucessões
por matpet92 » Qui Fev 02, 2012 22:13
- 4 Respostas
- 3436 Exibições
- Última mensagem por matpet92

Dom Fev 05, 2012 20:29
Cálculo: Limites, Derivadas e Integrais
-
- Limites de Funções vs Sucessões
por joaofonseca » Seg Mai 02, 2011 22:56
- 1 Respostas
- 2207 Exibições
- Última mensagem por LuizAquino

Seg Mai 02, 2011 23:09
Cálculo: Limites, Derivadas e Integrais
-
- Limite em sucessões - Cálculo
por EREGON » Seg Nov 10, 2014 21:02
- 6 Respostas
- 7300 Exibições
- Última mensagem por adauto martins

Qui Nov 13, 2014 14:27
Cálculo: Limites, Derivadas e Integrais
-
- Conclusão sobre Limite de sucessões
por EREGON » Sex Nov 14, 2014 15:00
- 2 Respostas
- 3628 Exibições
- Última mensagem por EREGON

Seg Nov 17, 2014 13:19
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.