• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sequência] Determinação de um dos termos

[Sequência] Determinação de um dos termos

Mensagempor Gustavo Gomes » Dom Fev 16, 2014 17:04

Olá, pessoal!

O primeiro termo de uma sequência é 2013. A partir do segundo termo, cada termo dessa sequência é a soma dos quadrados dos algarismos do termo anterior.
Ex. o segundo termo é {2}^{2}+{0}^{2}+{1}^{2}+{3}^{2}=14.

Qual é o 2013º termo dessa sequência?

A resposta é 16.

Tentei mas não consegui estabelecer um padrão para a formação dessa sequência...

Aguardo, grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Sequência] Determinação de um dos termos

Mensagempor young_jedi » Dom Fev 16, 2014 20:03

vamos montar a sequencia

{2}^{2}+{0}^{2}+{1}^{2}+{3}^{2}=14

1^2+4^2=17

1^2+7^2=50

5^2+0^2=25

2^2+5^2=29

2^2+9^2=85

8^2+5^2=\boxed{89}

8^2+9^2=145

1^2+4^2+5^2=42

4^2+2^2=20

2^2+0^2=4

4^2=16

1^2+6^2=37

3^2+7^2=58

5^2+8^2=\boxed{89}

repare que nos temos 89 repetido, isso quer dizer que a partir daqui a sequencia se repete. Entre o primeiro 89 e o segundo tem 8 numeros, isso quer dizer que a sequencia se repete de oito em oito

ate chegar ao primeiro 89 foram 7 numeros

portanto 2013-7=2005

dividindo 2005 por oito obtemos como resto o numero 5, o quinto numero apos o 89 é o 16 portanto 16 é a resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.