por Giudav » Ter Fev 11, 2014 18:38
Se A e B são dois conjuntos tais que o conjunto X = {(2,3), (5,7), (6,8), (7,3), (5, 8)} seja um subconjunto do produto Cartesiano de A por B. Se A

B = {2,3,7}, qual o menor número ímpar que pode representar o número de elementos de AxB sabendo que n(A)

n(B)?
a) 21
b) 25
c) 27
d) 35
e) 45
Gabarito: d) Resolução não faso a mímima ideia
-
Giudav
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Fev 21, 2012 23:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Qua Fev 12, 2014 17:47
Giudav escreveu:Se A e B são dois conjuntos tais que o conjunto X = {(2,3), (5,7), (6,8), (7,3), (5, 8)} seja um subconjunto do produto Cartesiano de A por B. Se A

B = {2,3,7}, qual o menor número ímpar que pode representar o número de elementos de AxB sabendo que n(A)

n(B)?
a) 21
b) 25
c) 27
d) 35e) 45
Gabarito: d) Resolução não faso a mímima ideia
Questão interessante!
Se

, então:

e

;
Do subconjunto x tiramos que

e

;
Vejamos se o conjunto acima satisfaz o enunciado:
-

;
-

; o número de elementos não é ímpar!
Se acrescentarmos um elemento ao conjunto B,

;
Se acrescentarmos dois elementos ao conjunto B,

; que não é ímpar!
Se acrescentarmos três elementos ao conjunto B,...
Espero ter ajudado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relações
por Rose » Qui Mai 15, 2008 14:41
- 1 Respostas
- 1861 Exibições
- Última mensagem por admin

Qui Mai 15, 2008 16:38
Funções
-
- Relações
por chronoss » Seg Mai 20, 2013 14:19
- 0 Respostas
- 990 Exibições
- Última mensagem por chronoss

Seg Mai 20, 2013 14:19
Álgebra Elementar
-
- Relações
por livia02 » Qua Set 04, 2013 17:15
- 0 Respostas
- 1051 Exibições
- Última mensagem por livia02

Qua Set 04, 2013 17:15
Álgebra Elementar
-
- Relações no círculo
por RBenicio » Qua Set 16, 2009 15:34
- 3 Respostas
- 2652 Exibições
- Última mensagem por Molina

Qui Set 17, 2009 14:45
Geometria Plana
-
- Relações trigonométricas
por Sandra Regina » Qua Nov 18, 2009 12:09
- 2 Respostas
- 1383 Exibições
- Última mensagem por Sandra Regina

Qua Nov 18, 2009 15:01
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.