• Anúncio Global
    Respostas
    Exibições
    Última mensagem

série: raio de connvergência

série: raio de connvergência

Mensagempor Victor Gabriel » Sáb Abr 27, 2013 05:47

Bom dia :!:
DÚVIDA sobre intervalo de convergência de série.
Questão: Encontre o raio de convergência e o intervalo de convergência da série \sum_{\n=0}^{\infty}\frac{{(-3)}^{n}{x}^{n}}{\sqrt[]{n+1}}.
Tem como mim ajudarem ai nesta questão. Até mais tarde!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: série: raio de connvergência

Mensagempor young_jedi » Dom Abr 28, 2013 11:27

pelo teste da razão

\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1

portanto

\lim_{n\to\infty}\left|\frac{(-3)^{n+1}.x^{n+1}}{\sqrt{n+1+1}}.\frac{\sqrt{n+1}}{(-3)^n.x^n}\right|<1

\lim_{n\to\infty}\left|\frac{(-3)x\sqrt{n+1}}{\sqrt{n+2}}\right|<1

\lim_{n\to\infty}\left|\frac{\sqrt{n}}{\sqrt{n}}\frac{\sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}}.(-3)x\right|<1

\lim_{n\to\infty}\left|(-3)x\frac{\sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}}\right|<1

\lim_{n\to\infty}|3x|.\frac{\sqrt{1+\frac{2}{n}}}{\sqrt{1+\frac{1}{n}}}<1

aplicando o limite temos

|3x|<1

portanto

|x|<\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?