por Prof Prevaricador » Dom Abr 14, 2013 16:25
Olá, venho mais uma vez colocar uma questão que não consegui resolver...
Por recurso ao metodo de inducao matematica prove que:

Já consegui provar o caso base n=1 que deu 1/35
Não consegui foi acabar de provar a Tese de Indução

Pelos meus cálculos ficaria:

substituindo pela hipótese de indução

e empanquei aqui...
Podem ajudar-me a concluir este exercício?
Cumprimentos
-
Prof Prevaricador
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 29, 2012 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Dom Abr 14, 2013 17:02
Dica : Fazendo

,podemos reescrever

como

.
Mas ,

. Então ...
Consegue concluir ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Prof Prevaricador » Dom Abr 14, 2013 18:35
Já consegui concluir o exercício depois de ler as tuas indicações.
Mas consegui resolver pela expressaõ:

estava a reduzir mal ao mmc...
Obrigado pela ajuda Santhiago!!
-
Prof Prevaricador
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 29, 2012 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Indução Matemática
por Beatriz4 » Sex Nov 25, 2011 21:25
- 2 Respostas
- 1800 Exibições
- Última mensagem por Beatriz4

Sex Nov 25, 2011 23:23
Funções
-
- Método da indução matématica
por cardosor23 » Seg Mar 26, 2012 19:38
- 0 Respostas
- 1051 Exibições
- Última mensagem por cardosor23

Seg Mar 26, 2012 19:38
Álgebra Elementar
-
- Sem utilizar o método de indução matemática
por Prof Prevaricador » Dom Abr 14, 2013 19:39
- 6 Respostas
- 3332 Exibições
- Última mensagem por e8group

Seg Abr 15, 2013 18:18
Sequências
-
- Provar igualdade sem recorrer à Indução Matemática
por EREGON » Ter Abr 14, 2015 06:29
- 2 Respostas
- 3906 Exibições
- Última mensagem por e8group

Sex Abr 17, 2015 23:12
Binômio de Newton
-
- integral pelo método de fraçoes parciais
por Crist » Seg Nov 12, 2012 22:05
- 1 Respostas
- 1551 Exibições
- Última mensagem por young_jedi

Ter Nov 13, 2012 12:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.