por nakagumahissao » Qua Abr 04, 2012 20:13
Na figura abaixo temos uma sequência de círculos tangentes a duas retas. O raio do primeiro círculo é 1 e o raio do segundo é r < 1. Cada círculo tangencia externamente o círculo anterior. Determine a soma dos raios dos n primeiros círculos.
http://learning.freeiz.com/?p=808Não consegui resolver esta questão de jeito nenhum. Poderiam me auxiliar por favor?
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Guill » Ter Mai 01, 2012 14:57
Consideremos

os n primeiros raios das circunferências, onde

. Se ligarmos o vértice ao centro do outro círculo, teremos uma reta que corta todos os centros das cricunferências (Semelhança de Triângulos).
Se descermos uma reta do centro da primeira circunferência perpendicularmente até o ''chão'', essa reta terá comprimento 1. Façamos o mesmo com todas as circunferências, e tracemos, a partir do centro anterior, uma reta perpendicular ao raio da anterior (o raio que encosta no chão), fechando triângulos retângulos. Pelo teorêma de Pitágoras (para dois raios hipotéticos):


![b=2.\sqrt[]{{r}_{x}.{r}_{x-1}} b=2.\sqrt[]{{r}_{x}.{r}_{x-1}}](/latexrender/pictures/cb9020cf21ae1982858da921e9a72d58.png)
Agora é simples. Basta calcular a soma pelo Teorema de Pitágoras no triângulo maior:
![\left({r}_{1}+{r}_{2}+...+{r}_{n} \right)^2=({r}_{1})^2+\left(2.\sum_{p=1}^{n} \sqrt[]{{r}_{p}.{r}_{p-1}} \right) ^2 \left({r}_{1}+{r}_{2}+...+{r}_{n} \right)^2=({r}_{1})^2+\left(2.\sum_{p=1}^{n} \sqrt[]{{r}_{p}.{r}_{p-1}} \right) ^2](/latexrender/pictures/343b444f6f96f2f7b3212bc1081467f5.png)
[Unparseable or potentially dangerous latex formula. Error 6 ]
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nakagumahissao » Ter Mai 01, 2012 16:40
Muito Obrigado. Assim que eu puder estarei verificando.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- grafico com duas retas tangentes tocando uma circunferencia
por sonek182 » Qua Ago 19, 2009 17:51
- 0 Respostas
- 1732 Exibições
- Última mensagem por sonek182

Qua Ago 19, 2009 17:51
Trigonometria
-
- Círculos e Retas - Determinar Coordenadas de P ?
por Mateus Pereira » Sex Abr 14, 2017 18:15
- 0 Respostas
- 1422 Exibições
- Última mensagem por Mateus Pereira

Sex Abr 14, 2017 18:15
Geometria Analítica
-
- retas tangentes
por kvothe » Sex Mai 06, 2011 17:48
- 1 Respostas
- 1843 Exibições
- Última mensagem por LuizAquino

Sex Mai 06, 2011 18:49
Cálculo: Limites, Derivadas e Integrais
-
- Retas tangentes à parabola
por Filipe Ricardo Rosa » Dom Jul 03, 2011 19:26
- 8 Respostas
- 9150 Exibições
- Última mensagem por LuizAquino

Qua Jul 06, 2011 10:21
Cálculo: Limites, Derivadas e Integrais
-
- Retas tangentes ao gráfico
por Marcos_Mecatronica » Sáb Abr 27, 2013 19:58
- 1 Respostas
- 1872 Exibições
- Última mensagem por young_jedi

Dom Abr 28, 2013 12:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.