• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo monotonia Sucessão

Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 18:24

Boa noite!

desde já fico muito agradecido pela ajuda no tópico sobre indução que com a ajuda de vocês consegui resolve lo!

tenho uma duvida em um exercicio sobre sucessoes.

Prova que a sucessão é decrescente.


fiz se

Un+1 < Un
Un= \frac { 2} {log(n+4)} < \frac{ 2} {log(n+3)} ==> log(n+4) > log(n+3) ==> n+4 > n+3 ==> que é crescente.[/tex]

no livro diz que é decrescente...

Obrigado!
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor MarceloFantini » Qui Mar 08, 2012 19:06

O termo geral é U_n = \frac{2}{\log (n+4)}?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 19:21

MarceloFantini escreveu:O termo geral é U_n = \frac{2}{\log (n+4)}?


boas
não.
o Un é o U_n = \frac{2}{\log (n+3)}
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor fraol » Qui Mar 08, 2012 19:35

o Un é o U_n = \frac{2}{\log (n+3)}


A sucessão é decrescente pois o termo geral decresce, o seu raciocínio inicial estava no caminho,
você deduziu que \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}
e agora?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 19:40

fraol escreveu:
o Un é o U_n = \frac{2}{\log (n+3)}


A sucessão é decrescente pois o termo geral decresce, o seu raciocínio inicial estava no caminho,
você deduziu que \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}
e agora?


ja percebi! foi o modo em que o livro aprensentou o resultado e estou um pouco cansado :oops:
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor fraol » Qui Mar 08, 2012 19:47

Ok TiagoFERD.

MarceloFantini,

Para mostrar que a sucessão é decrescente acho que pode-se usar o raciocínio inicial do TiagoFERD.
Para provar, estava pensando em indução, você tem alguma outra dica?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor MarceloFantini » Sex Mar 09, 2012 01:34

Acredito que ele tenha feito o raciocínio inverso. Sabemos que n+4 > n+3, daí \log (n+4) > \log(n+3), segue \frac{1}{\log (n+4}} < \frac{1}{\log (n+3)} e \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}. Ele partiu da conclusão para chegar em outra coisa óbvia.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59