• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo monotonia Sucessão

Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 18:24

Boa noite!

desde já fico muito agradecido pela ajuda no tópico sobre indução que com a ajuda de vocês consegui resolve lo!

tenho uma duvida em um exercicio sobre sucessoes.

Prova que a sucessão é decrescente.


fiz se

Un+1 < Un
Un= \frac { 2} {log(n+4)} < \frac{ 2} {log(n+3)} ==> log(n+4) > log(n+3) ==> n+4 > n+3 ==> que é crescente.[/tex]

no livro diz que é decrescente...

Obrigado!
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor MarceloFantini » Qui Mar 08, 2012 19:06

O termo geral é U_n = \frac{2}{\log (n+4)}?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 19:21

MarceloFantini escreveu:O termo geral é U_n = \frac{2}{\log (n+4)}?


boas
não.
o Un é o U_n = \frac{2}{\log (n+3)}
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor fraol » Qui Mar 08, 2012 19:35

o Un é o U_n = \frac{2}{\log (n+3)}


A sucessão é decrescente pois o termo geral decresce, o seu raciocínio inicial estava no caminho,
você deduziu que \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}
e agora?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor TiagoFERD » Qui Mar 08, 2012 19:40

fraol escreveu:
o Un é o U_n = \frac{2}{\log (n+3)}


A sucessão é decrescente pois o termo geral decresce, o seu raciocínio inicial estava no caminho,
você deduziu que \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}
e agora?


ja percebi! foi o modo em que o livro aprensentou o resultado e estou um pouco cansado :oops:
TiagoFERD
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Out 23, 2011 04:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Estudo monotonia Sucessão

Mensagempor fraol » Qui Mar 08, 2012 19:47

Ok TiagoFERD.

MarceloFantini,

Para mostrar que a sucessão é decrescente acho que pode-se usar o raciocínio inicial do TiagoFERD.
Para provar, estava pensando em indução, você tem alguma outra dica?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Estudo monotonia Sucessão

Mensagempor MarceloFantini » Sex Mar 09, 2012 01:34

Acredito que ele tenha feito o raciocínio inverso. Sabemos que n+4 > n+3, daí \log (n+4) > \log(n+3), segue \frac{1}{\log (n+4}} < \frac{1}{\log (n+3)} e \frac{2}{\log (n+4)} < \frac{2}{\log (n+3)}. Ele partiu da conclusão para chegar em outra coisa óbvia.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.