• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Series de Fourier

Series de Fourier

Mensagempor 380625 » Qua Set 28, 2011 01:30

A Série de Fourier, nos ajuda a resolver bastante problemas importantes envolvendo equações diferencias desde que possamos expressar uma função dada como uma serie infinita de seno ou cosseno.
Porem queria saber aonde essas series estão aplicadas, exemplo computadores, osciloscópio ou algo do tipo.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Series de Fourier

Mensagempor Neperiano » Qua Set 28, 2011 15:21

Ola

Ela é usada bastante em Matemática, Engenharia, Computação, Música, Ondulatória,
Sinais Digitais, Processamento de Imagens, etc.

Leai isso talvez o ajude

https://woc.uc.pt/matematica/getFile.do?tipo=2&id=2465
http://www.seara.ufc.br/tintim/matemati ... urier5.htm

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.