• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integração por parte

[Integral] Integração por parte

Mensagempor LAZAROTTI » Ter Out 23, 2012 10:33

Bom dia,

Utilizando o metódo de integração por parte, qual resultado se obtém da integral \int (x-1)e^-^x dx?

a)\frac{(x-1)^2}{2}e^-^x+c

b)-xe^-^x+c

c)xe^-^x-e^x+c

d)(x-1)^2e^-^x+c

e)xe^-^x+c

Obrigado!
LAZAROTTI
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Ter Mai 01, 2012 13:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Integração por parte

Mensagempor MarceloFantini » Ter Out 23, 2012 12:03

Faça u = x-1 e dv = e^{-x} \, dx. Integre por partes agora.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.