• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integração por parte...

[Integral] Integração por parte...

Mensagempor Jessica Seno » Dom Out 14, 2012 14:37

Boa Tarde a todos.

Tenho duvidas de como integrar:
\int_{}^{}xe^2^xdx

Como devo fazer?
Devo chamar de
u= x => du=1
dv= e^2^x => v= ??

E agora???
Jessica Seno
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Out 14, 2012 14:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [Integral] Integração por parte...

Mensagempor DanielFerreira » Dom Out 14, 2012 14:59

Olá Jessica Seno,
seja bem-vinda!!

Considere \begin{cases} 2x = u \rightarrow x = \frac{u}{2}\\ du = 2 \, dx \end {cases}

Daí,

\\ \int x \cdot e^{2x} \, dx = \\\\\\ \int \frac{u}{2} \cdot e^u \cdot \frac{du}{2} \ \\\\\\ \frac{1}{4}\int u \cdot e^u \, du =

Consegue prosseguir?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Integral] Integração por parte...

Mensagempor Jessica Seno » Seg Out 15, 2012 08:38

Bom Dia.

Muito obrigada pelas informações. A partir daí conseguirei resolver. rsrsrsrs
Desde já agradeço pela atenção,

Jéssica Seno
Jessica Seno
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Out 14, 2012 14:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [Integral] Integração por parte...

Mensagempor DanielFerreira » Dom Out 28, 2012 17:17

Que bom!

Até breve.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59