por brunojorge29 » Dom Out 14, 2012 11:19
O meu professor jogou essa questão e disse que ia cair uma parecida na prova. A questão dela é o seguinte. Encontrar a função desse duto e em seguida dizer qual o volume e a área superficial.
Obs: se vcs me ajudarem pelo menos na função o resto eu consigo fazer.
- Anexos
-

- Foto do problema
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Dom Out 14, 2012 12:50
nos podemos considerar que ele é composto de dois semi-cilindors e que um deles esta sobre o exio x e o outro sobre o eixo x
sendo assim aquele que esta sobre o eixo x tem equação de superficie dada por

ja aquele que esta sobre o exio y tem equação

mais repare que a uma região de intersecção entre eles onde devemos determinar o limite de cada plano
e intersecção deles são determindas pelas retas

e

no plano xy, portanto a equação que descreve a superficie fica

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por brunojorge29 » Dom Out 14, 2012 14:14
Nossa essa função ficou muito complicada pra eu entender. Tem como voce me explicar como ficaria a integral dupla pra calcular o volume e a area superficial?
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Dom Out 14, 2012 20:28
então a melhor maneira que eu encontrei para fazer é primeiro encontrar o volume da intersecção dos ciliindros
dividindo em 4 partes iguais, se imaginarmos um dos cilindros entorno do eixo z e o outro cilindro entorno do eixo y
e calcularmos o volume da intersecção deles no primeiro octante, temos a integral

resolvendo em função de x

resolvendo em função de y

este é o volume da intersecção deles
calculando o volume de cada semi cilindro e subtraindo o volume da intersecção tem-se o volume do solido.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por brunojorge29 » Qua Out 17, 2012 09:11
Pro calculo da area superficial ficaria a mesma coisa?
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Qua Out 17, 2012 11:24
Para a area eu calcularia a area dos semi-cilindros e depois o da intersecção deles
a area na intersecção poderia ser claculada dividindo a intersecção em quatro partes iguais , então calculando uma das partes teria a area total.
pegando como base o cilindro sobre o eixo x temos que sua equação é dada por

sendo que isso é valido para para y<x e -y>-x
podemos dividir este setor em infinitos arcos de comprimento ds para cada valor de x
assim calculando a area teriamos

mais temos que ds é

então a integral dupla da area fica

calculando a derivada e substituindo

fazendo uma troca de variaveis na ordem de integração

integrando com relação a x

a primeira integrla se calcula por substituição tirgonometrica ja a segunda por substituição de variavel calculando voce vai ter uma area das quatros interesecções, multiplicando por 4 tera a area da região central, fora dessa região pode se utilizar a formula do calculo da area do cilindro, somando as areas tem a area total da figura.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por brunojorge29 » Qui Out 18, 2012 10:42
Naquela sua segunda resposta, você disse que calcularíamos a interseção de dois cilindros, porem a sua função ficou a de um semi-cilindro. Voce errou ao dizer que era um cilindro? E se vc estiver certo, como eu quero apenas a interseção de dois semi-cilindros, entao eu deveria multiplicar por 2 nao é?
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Qui Out 18, 2012 11:20
eu errei ao dizer que era a intersecção de cilindro, é na verdade a intersecção de semi-cilindros
se fosse cilindros eu multiplicaria por 8 como são semi-cilindros eu multiliquei por 4
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por brunojorge29 » Qui Out 18, 2012 17:15
Voce es me ajudando muito, estou entendendo bastante. Mas algumas duvidas aparecem. Na sua segunda resposta vc fez a integração na seguinte ordem (dx dy). Não deveria ser (dy dx). E se não. pq?
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Qui Out 18, 2012 18:05
Então eu montei a integral pra calcular primeiro em relação a y
mais ai depois eu mudei ela pra calcular em x primeiro, se voce reparar eu mudei os limites de integração, mudar a ordem em que voce faz a integral mas respeitando a região de integração não altera seu valor.
eu fiz isto proque desta maneira é mais facil calculoar a integral, se voce integrar primeiro em y, quando voce for integrar em x vai surgir uma função complicada de se integrar, integrando em x primeiro torna mais facil.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por brunojorge29 » Qua Out 24, 2012 15:13
Cara o meu professor pediu pra fazer um duto com as mesmas dimensoes do semicilindro so que dessa vez ele queria que fosse uma parabola. Se esse do cilindro ja é dificil imagine uma com entrada de parabola. Me ajude ae. Como ficaria a equação e a interceção?
-
brunojorge29
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 30, 2011 09:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Qua Out 24, 2012 16:09
Não sei exatamente como é a parabola que o seu professor quer, mais poderia ser assim
sobre o eixo x ficaria

e sobre o eixo x

a intersecção deles é onde

portanto a função que descreve a superficie seria

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais Multiplas] Volume do solido
por brunojorge29 » Ter Nov 27, 2012 01:55
- 2 Respostas
- 3716 Exibições
- Última mensagem por Guilherme Pimentel

Seg Jan 13, 2014 09:05
Cálculo: Limites, Derivadas e Integrais
-
- Integrais Múltiplas
por EulaCarrara » Dom Jun 26, 2011 21:09
- 5 Respostas
- 3557 Exibições
- Última mensagem por EulaCarrara

Seg Jun 27, 2011 23:24
Cálculo: Limites, Derivadas e Integrais
-
- Como achar volume da zona esférica sem o raio da esfera
por comodoro_80 » Sáb Mai 21, 2011 14:09
- 1 Respostas
- 2472 Exibições
- Última mensagem por comodoro_80

Sáb Mai 21, 2011 15:06
Geometria Espacial
-
- Volume com integrais
por lucasfut » Seg Nov 18, 2013 01:29
- 1 Respostas
- 1558 Exibições
- Última mensagem por Man Utd

Qui Dez 05, 2013 21:36
Cálculo: Limites, Derivadas e Integrais
-
- Integrais - Volume por Rotação
por elisafrombrazil » Dom Abr 16, 2017 11:17
- 0 Respostas
- 4717 Exibições
- Última mensagem por elisafrombrazil

Dom Abr 16, 2017 11:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.